Background: Stress-only myocardial perfusion imaging (MPI) markedly reduces radiation dose, scanning time, and cost. We developed an automated clinical algorithm to safely cancel unnecessary rest imaging with high sensitivity for obstructive coronary artery disease (CAD).
Methods And Results: Patients without known CAD undergoing both MPI and invasive coronary angiography from REFINE SPECT were studied. A machine learning score (MLS) for prediction of obstructive CAD was generated using stress-only MPI and pre-test clinical variables. An MLS threshold with a pre-defined sensitivity of 95% was applied to the automated patient selection algorithm. Obstructive CAD was present in 1309/2079 (63%) patients. MLS had higher area under the receiver operator characteristic curve (AUC) for prediction of CAD than reader diagnosis and TPD (0.84 vs 0.70 vs 0.78, P < .01). An MLS threshold of 0.29 had superior sensitivity than reader diagnosis and TPD for obstructive CAD (95% vs 87% vs 87%, P < .01) and high-risk CAD, defined as stenosis of the left main, proximal left anterior descending, or triple-vessel CAD (sensitivity 96% vs 89% vs 90%, P < .01).
Conclusions: The MLS is highly sensitive for prediction of both obstructive and high-risk CAD from stress-only MPI and can be applied to a stress-first protocol for automatic cancellation of unnecessary rest imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020793 | PMC |
http://dx.doi.org/10.1007/s12350-021-02698-4 | DOI Listing |
Radiology
January 2025
From the Department of Cardiology (T.P., K.H., T.G., A.L., E.G., A.U., J.G.D., P.H.), MIRACL.ai (Multimodality Imaging for Research and Analysis Core Laboratory: and Artificial Intelligence) (T.P., S.T., K.H., T.G., A.L., E.G., A.U., J.G.D., P.H.), Inserm MASCOT-UMRS 942 (T.P., K.H., T.A.S., T.G., A.L., E.G., A.U., J.G.D., P.H.), and Department of Radiology (T.P., V.B., L.H., T.G.), Université Paris Cité, University Hospital of Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; Cardiovascular Magnetic Resonance Laboratory (T.P., T.H., T.U., F.S., S.C., P.G., J.G.) and Cardiac Computed Tomography Laboratory (T.P., T.H., T.L., B.C., T.U., F.S., S.C., H.B., A.N., M.A., P.G., J.G.), Hôpital Privé Jacques Cartier, Institut Cardiovasculaire Paris Sud, Ramsay Santé, 6 Avenue du Noyer Lambert, 91300 Massy, France; Scientific Partnerships, Siemens Healthcare France, Saint-Denis, France (S.T.); Department of Cardiology, Hôpital Universitaire de Bruxelles-Hôpital Erasme, Brussels, Belgium (A.U.); and Department of Cardiovascular Imaging, American Hospital of Paris, Neuilly, France (O.V., M.S.).
Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD.
View Article and Find Full Text PDFCureus
December 2024
Adult Cardiology, Uganda Heart Institute, Kampala, UGA.
Acute coronary syndrome is the leading cause of death worldwide, with the highest rates occurring in low-income global regions. This is possibly due to increasing levels of urbanization, which are accompanied by changes in diet and lifestyle, the most common risk factors for coronary artery disease (CAD). Risk factors for CAD are divided into traditional and non-traditional risk factors.
View Article and Find Full Text PDFOpen Heart
January 2025
Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Background: Visual assessment of coronary CT angiography (CCTA) is time-consuming, influenced by reader experience and prone to interobserver variability. This study evaluated a novel algorithm for coronary stenosis quantification (atherosclerosis imaging quantitative CT, AI-QCT).
Methods: The study included 208 patients with suspected coronary artery disease (CAD) undergoing CCTA in Perfusion Imaging and CT Coronary Angiography With Invasive Coronary Angiography-1.
Eur Radiol
January 2025
Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
Objectives: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagnostic performance of a recently updated deep learning model (CorEx-2.0) for quantifying coronary stenosis, compared separately with two expert CCTA readers as references.
View Article and Find Full Text PDFCureus
December 2024
Department of Invasive Cardiology, University Hospital "St. Marina", Varna, BGR.
Background Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, with coronary artery disease (CAD) being the primary contributor. Periodontitis, a common non-communicable disease, has been associated with an increased risk of CVD. Previous studies have suggested a link between the severity of periodontitis and the degree of coronary artery obstruction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!