Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding how a diversity of plants in agroecosystems affects the adaptation of pathogens is a key issue in agroecology. We analyze PDE systems describing the dynamics of adaptation of two phenotypically structured populations, under the effects of mutation, selection and migration in a two-patch environment, each patch being associated with a different phenotypic optimum. We consider two types of growth functions that depend on the n-dimensional phenotypic trait: either local and linear or nonlocal nonlinear. In both cases, we obtain existence and uniqueness results as well as a characterization of the large-time behaviour of the solution (persistence or extinction) based on the sign of a principal eigenvalue. We show that migration between the two environments decreases the chances of persistence, with in some cases a 'lethal migration threshold' above which persistence is not possible. Comparison with stochastic individual-based simulations shows that the PDE approach accurately captures this threshold. Our results illustrate the importance of cultivar mixtures for disease prevention and control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-021-01637-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!