The human voltage-gated proton channel Hv1 is a drug target for cancer, ischemic stroke, and neuroinflammation. It resides on the plasma membrane and endocytic compartments of a variety of cell types, where it mediates outward proton movement and regulates the activity of NOX enzymes. Its voltage-sensing domain (VSD) contains a gated and proton-selective conduction pathway, which can be blocked by aromatic guanidine derivatives such as 2-guanidinobenzimidazole (2GBI). Mutation of Hv1 residue F150 to alanine (F150A) was previously found to increase 2GBI apparent binding affinity more than two orders of magnitude. Here, we explore the contribution of aromatic interactions between the inhibitor and the channel in the presence and absence of the F150A mutation, using a combination of electrophysiological recordings, classic mutagenesis, and site-specific incorporation of fluorinated phenylalanines via nonsense suppression methodology. Our data suggest that the increase in apparent binding affinity is due to a rearrangement of the binding site allowed by the smaller residue at position 150. We used this information to design new arginine mimics with improved affinity for the nonrearranged binding site of the wild-type channel. The new compounds, named "Hv1 Inhibitor Flexibles" (HIFs), consist of two "prongs," an aminoimidazole ring, and an aromatic group connected by extended flexible linkers. Some HIF compounds display inhibitory properties that are superior to those of 2GBI, thus providing a promising scaffold for further development of high-affinity Hv1 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263924PMC
http://dx.doi.org/10.1085/jgp.202012832DOI Listing

Publication Analysis

Top Keywords

apparent binding
8
binding affinity
8
binding site
8
hifs arginine
4
arginine mimic
4
mimic inhibitors
4
hv1
4
inhibitors hv1
4
channel
4
hv1 channel
4

Similar Publications

Differential Regulation of Hyaluronan Synthesis by Three Isoforms of Hyaluronan Synthases in Mammalian Cells.

Biomolecules

December 2024

Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.

Hyaluronan (HA) is one of the crucial components of the extracellular matrix in vertebrates and is synthesized by three hyaluronan synthases (HASs), namely HAS1, HAS2, and HAS3. The low expression level of HASs in normal keratinocytes and other various types of cells presents a recognized challenge, impeding biological and pathological research on their localization. In this study, the human proteins HAS1, HAS2, and HAS3 with fused maltose-binding protein (MBP) tags were successfully expressed at high levels and purified for the first time in HEK293F cells.

View Article and Find Full Text PDF

Due to their involvement in pathogen-mediated immune responses, the hypervariable genes of the Major Histocompatibility Complex (MHC) have become a paradigm for investigating the evolution and maintenance of genetic (adaptive) diversity, contextually providing insight into the viability of wild populations, which is meaningful for conservation. Here, we provide the first preliminary characterization of MHC polymorphism and evolution in trouts from Albania, a known hotspot of Salmonid diversity harboring ecologically and phylogenetically distinct native (threatened) taxa. Overall, 36 trout-including Lake Ohrid-endemic and , and both riverine and lacustrine native brown trout (the complex) from the Drin-Skadar drainage-were genotyped at the MHC- locus through next-generation amplicon sequencing.

View Article and Find Full Text PDF

Multiply adverse effects including declines in production performance and excessive fat deposition were noticed with the extension of the laying cycle in hens, which are pertinent to animal welfare and human food safety. This study aimed to investigate the effect of dietary supplementation of bile acids (BAs) on production performance and lipid metabolism in late-phase laying hens. A total of 144 70-week-old hens were distributed into three treatments with eight replicates per treatment, including the basal diet with 0 (Ctrl), 95.

View Article and Find Full Text PDF

Mammalian red blood cells are generated via a terminal erythroid differentiation pathway culminating in cell polarization and enucleation. Actin filament polymerization is critical for enucleation, but the molecular regulatory mechanisms remain poorly understood. We utilized publicly available RNA-seq and proteomics datasets to mine for actin-binding proteins and actin- nucleation factors differentially expressed during human erythroid differentiation and discovered that a focal adhesion protein-Tensin-1-dramatically increases in expression late in differentiation.

View Article and Find Full Text PDF

Polycationic γ-Cyclodextrin with Amino Side Chains for a Highly Efficient Anti-Heparin Coagulant.

Adv Healthc Mater

January 2025

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.

Multicharged cyclodextrins have attracted significant attention because of their applications in biology and pharmaceuticals. This study reports an aminoethoxy-phenyl-pyridinium-modified γ-cyclodextrin (PyA-γ-CD) as a highly efficient coagulant for heparin through multivalent interactions. The UV titration experiment is performed to obtain apparent binding constants (K) between PyA-γ-CD and heparin as high as 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!