Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer.

Chem Rev

Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany.

Published: January 2022

For molecules with a singlet ground state, the population of triplet states is mainly possible (a) by direct excitation and subsequent intersystem crossing or (b) by energy transfer from an appropriate sensitizer. The latter scenario enables a catalytic photochemical reaction in which the sensitizer adopts the role of a catalyst undergoing several cycles of photon absorption and subsequent energy transfer to the substrate. If the product molecule of a triplet-sensitized process is chiral, this process can proceed enantioselectively upon judicious choice of a chiral triplet sensitizer. An enantioselective reaction can also occur in a dual catalytic approach in which, apart from an achiral sensitizer, a second chiral catalyst activates the substrate toward sensitization. Although the idea of enantioselective photochemical reactions via triplet intermediates has been pursued for more than 50 years, notable selectivities exceeding 90% enantiomeric excess () have only been realized in the past decade. This review attempts to provide a comprehensive survey on the various photochemical reactions which were rendered enantioselective by triplet sensitization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.1c00272DOI Listing

Publication Analysis

Top Keywords

photochemical reactions
12
energy transfer
12
enantioselective photochemical
8
triplet
5
enantioselective
4
reactions enabled
4
enabled triplet
4
triplet energy
4
transfer molecules
4
molecules singlet
4

Similar Publications

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

Airborne particulate matter (PM) in urban environments poses significant health risks by penetrating the respiratory system, with concern over lung-deposited surface area (LDSA) as an indicator of particle exposure. This study aimed to investigate the diurnal trends and sources of LDSA, particle number concentration (PNC), elemental carbon (EC), and organic carbon (OC) concentrations in Los Angeles across different seasons to provide a comprehensive understanding of the contributions from primary and secondary sources of ultrafine particles (UFPs). Hourly measurements of PNC and LDSA were conducted using the DiSCmini and Scanning Mobility Particle Sizer (SMPS), while OC and EC concentrations were measured using the Sunset Lab EC/OC Monitor.

View Article and Find Full Text PDF

Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations.

Acc Chem Res

January 2025

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.

ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales.

View Article and Find Full Text PDF

A new nonperipheral zinc(II) phthalocyanine bearing octa carboxylic acid ethyl ester derivative substituted triazole attached propylmercaptothiobenzylmercapto derivative was synthesized via the tetramerization reaction of phthalonitrile. The photochemical in vitro photodynamic activity of zinc(II) phthalocyanine (), such as human nonsmall cell lung carcinoma cell lines, was investigated in this study. The singlet oxygen generation property of novel zinc(II) phthalocyanine () was also examined due to the significantly high singlet oxygen quantum yield of (F = 0.

View Article and Find Full Text PDF

Efficient methods for synthesizing allenes from readily available starting materials pose a persistent challenge in organic chemistry. In this work, we present a novel two-stage protocol for allene synthesis involving the single-atom insertion into alkenes, facilitated by synergistic photoredox and cobalt catalysis. Diverging from conventional methods such as the Doering-LaFlamme reaction, this photochemical rearrangement approach operates efficiently under mild conditions in a radical-based manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!