[Research progress in the application of magnetic solid phase extraction based on carbon based magnetic materials in food analysis].

Se Pu

Estuarine Ecological Security and Environmental Health Key Laboratory of Provincial University,Tan Kah Kee College, Xiamen University, Zhangzhou 363105, China.

Published: April 2021

Trace toxic substances in food pose a serious threat to human health, and need to be detected and analyzed to ensure food safety. However, there are many kinds of toxic substances in food, with small amounts and complex matrices, making it necessary to select an appropriate sample pretreatment technology for extraction and purification. There are some disadvantages to sample pretreatment methods such as solid phase extraction and liquid-liquid extraction, in terms of poor selectivity, significant influence of matrix interference, large sample requirement, long extraction time, use of a large amount of harmful organic solvents, and cumbersome and time-consuming operation. Magnetic solid phase extraction (MSPE) combines the advantages of magnetic separation and traditional SPE technology, avoids time-consuming column loading, and can extract the target analyte efficiently. Because of its advantages, in that it has simple operation, is time-saving and fast, requires no centrifugal filtration, and is environmentally friendly, it is considered an efficient sample pretreatment technology and applied in food analysis. The adsorption capacity and selectivity of the magnetic adsorbent used in MSPE are the key factors affecting the extraction efficiency and selectivity of MSPE, and play a key role in the accuracy of the established method. Carbon-based magnetic materials are a type of new functional magnetic materials prepared by the co-precipitation of carbon-based materials (carbon nanotubes, graphene, metal-organic framework-derived carbon, or activated carbon) and magnetic materials. In order to endow carbon-based magnetic materials with the advantages of both, carbon materials and magnetic materials, while also reflecting the advantages of high specific surface area, good stability, low cost, environmental friendliness, excellent physical and chemical properties, high porosity, and high adsorption capacity, proper functional modification is needed. Carbon-based magnetic materials modified by functionalization can efficiently enrich organic and inorganic analytes with different properties, and have seen significant progress in environmental analysis, biological detection, pollution control, and other fields. In recent years, MSPE technology based on carbon-based magnetic materials has been gradually applied in food analysis and pretreatment, but its use is still in infancy and holds immense application potential. Reference to more than 50 papers published in SCI and Chinese core journals over the past four years reveals that carbon-based materials include carbon nanotubes modified by functional groups, reagents, or materials; graphene, graphene oxide, and reduced graphene oxide; carbon derived from a gold organic framework; activated carbon biochar; and nanodiamond. The harmful substances in food samples include esters, mycotoxins, polycyclic aromatic hydrocarbons, antibiotics, alkaloids, phenols, vitamins, and antibiotics. Based on the classification of carbon-based materials, this review reveals that carbon-based magnetic materials have good preconcentration ability for harmful substances in food samples. MSPE can be combined with GC-MS, liquid chromatography-high resolution mass spectrometry (LC-HRMS), ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS), ultra high performance liquid chromatography-Q-Exactive high resolution mass spectrometry (UHPLC-Q-Exactive HRMS), high performance liquid chromatography-diode array detection (HPLC-DAD), gas chromatography micro-electron capture detection (GC-μECD), high performance liquid chromatography fluorescence with post-column photochemical derivatization (HPLC-PCD-FLD), and HPLC-UV to analyze food samples. These combined technologies have high accuracy and recovery. However, the synthesis methods of carbon-based magnetic materials such as carbon nanotubes and graphene, incur high energy consumption and high cost, and involve complex processes, which limit their application. Therefore, a carbon-based magnetic adsorbent with low cost, high selectivity, and high extraction efficiency was developed by further exploring functional modification with biochar as a carbon base. This is a very promising direction to develop MSPE technology utilizing biochar-based magnetic materials for food sample pretreatment. This review provides a theoretical basis and technical support for the wide application of carbon-based magnetic materials in MSPE technology for food analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404120PMC
http://dx.doi.org/10.3724/SP.J.1123.2020.05038DOI Listing

Publication Analysis

Top Keywords

magnetic materials
48
carbon-based magnetic
32
magnetic
17
materials
17
substances food
16
sample pretreatment
16
solid phase
12
phase extraction
12
food analysis
12
carbon-based materials
12

Similar Publications

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Observation of Robust Compressed CuO Octahedra and Exotic Spin Structure in CaCuFeO.

J Am Chem Soc

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

CuO octahedra usually show elongated distortion, leading to active orbitals and planar exchange interactions, while compressed CuO octahedra with active orbitals and unidirectional exchange interactions are exceptionally rare. Here, we design and synthesize a new frustrated antiferromagnet CaCuFeO through a high-pressure and high-temperature approach, in which robust compressed CuO octahedra are realized, separating the FeO sheets that comprise zigzag spin ladders. Magnetic susceptibility and specific heat measurements exhibit a long-range antiferromagnetic order below the Néel temperature of 165 K, which is further confirmed by neutron diffraction.

View Article and Find Full Text PDF

Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.

View Article and Find Full Text PDF

The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.

View Article and Find Full Text PDF

Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!