Broadband rotational spectra of cis- and trans-(-)-carveol were recorded using a chirped pulse Fourier transform microwave spectrometer in the 2-6 GHz region. To aid in spectroscopic assignments a theoretical conformational search was carried out using a combination of a two dimensional potential energy scan, scanning over the isopropenyl and hydroxyl groups torsional angles, and the Conformer-Rotamer Ensemble Sampling Tool. The theoretical results yielded a total of 23 conformers for the trans- and 19 for the cis-conformer. Utilizing these results, a total of five conformers could be assigned in the spectra, two for trans- and three for cis-(-)-carveol. In both conformers of trans-carveol, the isopropenyl group is in an equatorial position and adopts the gauche- conformation in one and the the antiperiplanar conformation in the other, with the hydroxyl group in the axial position and adopting the antiperiplanar conformation in both. For cis-carveol the analogous conformers were found but with the hydroxyl in a equatorial position, in addition to an axial isopropenyl conformer. To interpret the experimental intensity patterns and examine conformational cooling effects, transition states were identified using the Synchronous Transit Quasi-Newton method. We found that most of the higher energy conformers cool out to the five experimentally observed ones and the others are too high in energy to be sufficiently populated in the molecular expansion for an experimental observation. To investigate the interesting preference for the axial position of the isopropenyl group in cis-(-)-carveol, which has not been seen before in monoterpenoids, non-covalent interactions and quantum theory of atoms-in-molecules analyses were carried out. These analyses reveal a hydrogen bonding interaction between the hydroxyl group and the isopropenyl π-system. A natural bond orbital analysis of the hydrogen bond allowed us to decompose the interaction into its constituent natural bond orbitals, and to quantify its strength. Although relatively weak, the hydrogen bond tips the balance towards the axial position of the isopropenyl group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp02101j | DOI Listing |
Dalton Trans
December 2024
Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
The coordination sphere and steric variations in iron catalysts present a fascinating strategy for adjusting monomer regio- and stereoselective enchainment, leading to the development of novel polymer structures in isoprene polymerization. This study investigates a range of iron complexes with variations in the coordination spheres (bidentate and tridentate) and steric/electronic properties of side arms to evaluate their impact on isoprene polymerization. X-ray analysis revealed that the tridentate Fe-NMe2 complex has a dinuclear structure with a -O bridge, where each iron center is monoligated in an octahedral geometry.
View Article and Find Full Text PDFDalton Trans
August 2024
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
Biomacromolecules
August 2024
Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
This study focused on the cross-linking of poly(2-isopropenyl-2-oxazoline) (PiPOx) with gelatin to obtain strong, degradable hybrid hydrogels with good cell adhesion. The molecular weight and concentration of PiPOx and the PiPOx-to-gelatin ratio were varied to adjust the mechanical and swelling properties of the hybrid hydrogels. The swelling degree of PiPOx-gelatin hydrogels in water ranged between 1260 and 810%, with the corresponding Young's compressive moduli ranging from 77 to 215 kPa.
View Article and Find Full Text PDFPolymers (Basel)
June 2024
Institute of Polymer Chemistry, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria.
Functional polymers play an important role in various biomedical applications. From many choices, poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a promising reactive polymer with great potential in various biomedical applications. PIPOx, with pendant reactive 2-oxazoline groups, can be readily prepared in a controllable manner via several controlled/living polymerization methods, such as living anionic polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer (RAFT) or rare earth metal-mediated group transfer polymerization.
View Article and Find Full Text PDFBiomacromolecules
June 2024
Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
Poly(2-isopropenyl-2-oxazoline) (PIPOx) represents a universal polymer platform with pendant 2-oxazoline groups, allowing the preparation of biomaterials for various biomedical applications. However, there is a lack of information on PIPOx concerning the effect of molar mass () on cytotoxicity and bioimmunological properties. Here, aqueous copper(0)-mediated reversible-deactivation radical polymerization (Cu-RDPR) was used for the preparation of PIPOx with defined and low dispersity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!