Enantiomers are ubiquitous in nature, and they are especially important in the field of pharmaceutical chemistry. Although the enantiomers of chiral drugs have identical chemical structures, they differ notably in their pharmacological, toxicological, pharmacokinetic, metabolic, and other biological activities. The same is true for amphetamines, ketamine, and cathinones, as the chiral separation of these three drugs is representative of drugs. Gas chromatography (GC), high performance liquid chromatography (HPLC), and capillary electrophoresis (CE) are widely used for the chiral separation of these three kinds of drugs. There are some similarities among the three methods for the chiral separation of amphetamines, ketamine, and cathinones: -trifluoroacetyl-L-prolinyl chloride and (+)-α-methoxy-α-trifluoromethylphenylacetic acid are the two typical chiral derivatization reagents used in GC. In HPLC, three kinds of chiral stationary phases are used: proteins, polysaccharides, and macrocyclic antibiotics. Cyclodextrin and its derivatives are most commonly used in CE. However, these three methods have inherent shortcomings. In the case of GC, impurities produced during chiral derivatization may interfere with the analysis, and high reaction temperatures affect the efficiency of chiral separation. HPLC has limited application scope and is expensive. In CE, there has no established process to determine the appropriate chiral selector. In recent years, research into application of the chiral separation of the above-mentioned three kinds of drugs has its own characteristics in forensic toxicology. The chiral separation of amphetamine drugs is mostly used to infer the prototype and synthesis route of drugs on the market. The chiral separation of ketamine involves a variety of biological samples. For cathinones, chiral separation methods emphasize their wide applicability. In this review, 66 reports published in professional local and overseas magazines during the past decade are collated. The characteristics of the enantiomers of amphetamines, ketamine, and cathinones as well as the mechanism of chiral recognition are briefly introduced. The commonness of the research and the application of chiral separation in forensic toxicology are reviewed. This paper proposes that the chiral separation of drugs can be further investigated from the following three aspects: 1) the use of computer technology to establish a molecular model for exploring the mechanism of chiral recognition; 2) developing new technologies for chiral separation and carrying out commercial research on the supercritical fluid method; 3) applying chiral separation to judicial practice, pharmaceutical research and development, and other practical fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403806 | PMC |
http://dx.doi.org/10.3724/SP.J.1123.2020.05020 | DOI Listing |
ACS Omega
January 2025
School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
The integration of molecular docking and AM1 calculations has elucidated the complexation behavior of butylone enantiomers with methylated β-cyclodextrin derivatives. Our study reveals that butylone can adopt two distinct conformations within the β-cyclodextrin cavity, with one conformation being preferentially stabilized due to its favorable binding energy. This conformation preference is influenced by the methylation at the O2, O3, and O6 positions of β-cyclodextrin, which significantly affects complex stability and solvation properties.
View Article and Find Full Text PDFAdv Mater
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling.
View Article and Find Full Text PDFChirality
February 2025
Daicel Chiral Technologies, West Chester, Pennsylvania, USA.
The influence of additives and modifiers on the chiral HPLC separation of the nicotine enantiomers using UV/Vis detection is discussed. Selected alcohols as modifiers and selected amines as additives were found to have a significant effect on the resolution and retention times of nicotine enantiomers even to the point of eliminating component elution. Systematic variations in the concentration of ethanol, methanol, and isopropanol, as modifiers, along with variations in the concentration of diethylamine, triethylamine, tributylamine, ethylenediamine, isopropylamine, as additives, revealed that the average resolution (R) of the nicotine enantiomers ranged from 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China. Electronic address:
In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.
View Article and Find Full Text PDFBiomolecules
January 2025
United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.
Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!