Quercetin 3-O-glycosides (Q3Gs) are important members of quercetin glycosides with excellent pharmacological activities such as anti-oxidation, anti-inflammation, anti-cancer and anti-virus. Two representatives of Q3Gs, rutin and troxerutin, have been developed into clinical drugs, demonstrating Q3Gs have become one of the important sources of innovative drugs. However, the applications of Q3Gs in food and pharmaceutical industries are hampered by its poor bioavailability. Of the known means, selective acylation modification of Q3Gs through enzymatic catalysis to obtain Q3G esters is one of the effective ways to improve its bioavailability. Herein, the enzyme-mediated acylation of Q3Gs were reviewed in details, focusing on the four tool enzymes (acyltransferases, lipases, proteases and esterases) and the whole-cell mediated biotransformation, as well as the effect of acylations on the biological activities of Q3Gs. Furthermore, the highly efficient synthesis and diversification of acylated site for Q3G esters were also discussed. Taken together, this review provides a new perspective for further structural modifications of Q3Gs towards drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.200769 | DOI Listing |
Inflammation
January 2025
Research Center for Food and Cosmetic Safety and Center for Drug Research and Development, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.
View Article and Find Full Text PDFFood Chem
February 2025
International Centre for Brewing Science, University of Nottingham.. Electronic address:
Hop leaves, a by-product from hop cone harvesting, contain phenolic compounds of potential value for food or beverage applications. However, the abundant phenolics in hop leaves remain largely unquantified. This study quantified phenolics in hop leaves over two crop years, for three commercially significant varieties, at different developmental stages post-flowering.
View Article and Find Full Text PDFACS Omega
October 2023
Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
Recently, much interest has been devoted to finding effective G-quadruplex ligands, both of synthetic or natural origins, which may be of potential use in the field of cancer therapy. Among compounds of natural origin, a common flavonol quercetin has attracted notable attention. Yet, only a modest number of papers have been concerned with a comparison of quercetin conjugates binding to G-quadruplexes.
View Article and Find Full Text PDFPlants (Basel)
July 2022
Laboratory of Natural Products, Postgraduate Program in Biotechnology, Campus Centro-Oeste, Universidade Federal de São João del-Rei, Divinópolis 35501-296, MG, Brazil.
J Agric Food Chem
April 2022
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing 100050, China.
Quercetin 3---acetylgalactosamine (Q3GalNAc), a derivative of dietary hyperoside, had never been enzymatically synthesized due to the lack of well-identified -acetylgalactosamine-transferase (GalNAc-T). Herein, PhUGT, an identified flavonoid 3--galactosyltransferase from , was demonstrated to display quercetin GalNAc-T activity, transferring a -acetylgalactosamine (GalNAc) from UDP--acetylgalactosamine (UDP-GalNAc) to the 3-OH of quercetin to form Q3GalNAc with a low conversion of 11.7% at 40 °C for 2 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!