Copper deficiency (CuD) is a common cause of oxidative cardiac tissue damage in ruminants. The expression of copper chaperone (Cu-Ch) encoding genes enables an in-depth understanding of copper-associated disorders, but no previous studies have been undertaken to highlight Cu-Ch disturbances in heart tissue in ruminants due to CuD. The current study aimed to investigate the Cu-Ch mRNA expression in the heart of goats after experimental CuD and highlight their relationship with the cardiac measurements. Eleven male goats were enrolled in this study and divided into the control group (n = 4) and CuD group (n = 7), which received copper-reducing dietary regimes for 7 months. Heart function was evaluated by electrocardiography and echocardiography, and at the end of the experiment, all animals were sacrificed and the cardiac tissues were collected for histopathology and quantitative mRNA expression by real-time PCR. In the treatment group, cardiac measurements revealed increased preload and the existence of cardiac dilatation, and significant cardiac tissue damage by histopathology. Also, the relative mRNA expression of Cu-Ch encoding genes; ATP7A, CTr1, LOX, COX17, as well as ceruloplasmin (CP), troponin I3 (TNNI3), glutathione peroxidase (GPX1), and matrix metalloprotease inhibitor (MMPI1) genes were significantly down-regulated in CuD group. There was a significant correlation between investigated genes and some cardiac function measurements; meanwhile, a significant inverse correlation was observed between histopathological score and ATP7B, CTr1, LOX, and COX17. In conclusion, this study revealed that CuD induces cardiac dilatation and alters the mRNA expression of Cu-Ch genes, in addition to TNNI3, GPX1, and MMPI1 that are considered key factors in clinically undetectable CuD-induced cardiac damage in goats which necessitate further studies for feasibility as biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11259-021-09811-5 | DOI Listing |
Sci Rep
December 2024
Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!