Microbially facilitated nitrogen cycling in tropical corals.

ISME J

Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.

Published: January 2022

Tropical scleractinian corals support a diverse assemblage of microbial symbionts. This 'microbiome' possesses the requisite functional diversity to conduct a range of nitrogen (N) transformations including denitrification, nitrification, nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA). Very little direct evidence has been presented to date verifying that these processes are active within tropical corals. Here we use a combination of stable isotope techniques, nutrient uptake calculations and captured metagenomics to quantify rates of nitrogen cycling processes in a selection of tropical scleractinian corals. Denitrification activity was detected in all species, albeit with very low rates, signifying limited importance in holobiont N removal. Relatively greater nitrogen fixation activity confirms that corals are net N importers to reef systems. Low net nitrification activity suggests limited N regeneration capacity; however substantial gross nitrification activity may be concealed through nitrate consumption. Based on nrfA gene abundance and measured inorganic N fluxes, we calculated significant DNRA activity in the studied corals, which has important implications for coral reef N cycling and warrants more targeted investigation. Through the quantification and characterisation of all relevant N-cycling processes, this study provides clarity on the subject of tropical coral-associated biogeochemical N-cycling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692614PMC
http://dx.doi.org/10.1038/s41396-021-01038-1DOI Listing

Publication Analysis

Top Keywords

nitrogen cycling
8
tropical corals
8
tropical scleractinian
8
scleractinian corals
8
nitrogen fixation
8
nitrification activity
8
corals
6
nitrogen
5
tropical
5
activity
5

Similar Publications

The electrochemical conversion of nitrate to ammonia is necessary to restore the globally perturbed nitrogen cycle. Herein, the regulated coordination of active Cu single atoms to selectively modulate the energy barriers of proton-electron transfer steps was investigated and offered valuable insights for improving the selectivity and kinetics of the NORR.

View Article and Find Full Text PDF

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

The construction of dams to intercept natural rivers constitutes the most severe human activity influencing the underlying surface. This study focuses on four cascade reservoirs of the Lancang River and explores their impact on the migration of organic matter in sediments. The research reveals significant spatial variations in total organic carbon (TOC) and total nitrogen concentrations in the sediments of the four reservoirs.

View Article and Find Full Text PDF

Flame retardancy and durability of cotton fabric modified with high-efficiency diboraspiro rings groups flame retardant.

Int J Biol Macromol

January 2025

College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

The synthesis of highly efficient and environmentally friendly flame retardants through the synergistic interaction of boron, phosphorus and nitrogen is becoming a new research direction. In this study, N-DBSPA, a flame retardant with high flame retardancy, high thermal stability and high efficiency, was prepared by the reaction between pentaerythritol borate and amino trimethylene phosphate, and the limiting oxygen index (LOI) of the modified cotton fabric increased from 18 % to 44.7 % at a weight gain (WG) of 20.

View Article and Find Full Text PDF

Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites.

J Hazard Mater

January 2025

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China. Electronic address:

Hyperaccumulators harbor potentials for remediating rare earth elements (REEs)-contaminated soils. However, how they thrive in low-nutrient abandoned REEs mining sites is poorly understood. Three ferns (REEs-hyperaccumulators Dicranopteris pedata and Blechnum orientale, and non-hyperaccumulator Pteris vittata) along with their rhizosphere soils were collected to answer this question by comparing differences in soil nutrient levels, soil and plant REEs concentrations, and bacterial diversity, composition, and functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!