Effective treatments of neurodegenerative diseases require drugs to be actively transported across the blood-brain barrier (BBB). However, nanoparticle drug carriers explored for this purpose show negligible brain uptake, and the lack of basic understanding of nanoparticle-BBB interactions underlies many translational failures. Here, using two-photon microscopy in mice, we characterize the receptor-mediated transcytosis of nanoparticles at all steps of delivery to the brain in vivo. We show that transferrin receptor-targeted liposome nanoparticles are sequestered by the endothelium at capillaries and venules, but not at arterioles. The nanoparticles move unobstructed within endothelium, but transcytosis-mediated brain entry occurs mainly at post-capillary venules, and is negligible in capillaries. The vascular location of nanoparticle brain entry corresponds to the presence of perivascular space, which facilitates nanoparticle movement after transcytosis. Thus, post-capillary venules are the point-of-least resistance at the BBB, and compared to capillaries, provide a more feasible route for nanoparticle drug carriers into the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257611 | PMC |
http://dx.doi.org/10.1038/s41467-021-24323-1 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.
View Article and Find Full Text PDFInflammation
January 2025
Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, Shenzhen, People's Republic of China.
Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation.
View Article and Find Full Text PDFNat Rev Dis Primers
November 2024
Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
The vascular endothelial barrier maintains intravascular volume and metabolic homeostasis. Although plasma fluids and proteins extravasate continuously from tissue microvasculature (capillaries, post-capillary venules), systemic vascular leakage increases in critical illness associated with sepsis, burns and trauma, among others, or in association with certain drugs or toxin exposures. Systemically dysregulated fluid homeostasis, which can lead to hypovolaemia, hypotensive shock and widespread tissue oedema, has been termed systemic capillary leak syndrome (SCLS) when overt secondary causes (for example, heart or liver failure) are excluded.
View Article and Find Full Text PDFJ Crohns Colitis
October 2024
Genomic Research Center, AbbVie Inc, Cambridge, MA.
Front Immunol
June 2024
Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!