L-3,4-Dihydroxyphenylalanin (L-DOPA or levodopa) is currently the most used drug to treat symptoms of Parkinson's disease (PD). After crossing the blood-brain barrier, it is enzymatically converted to dopamine by neuronal cells and restores depleted endogenous neurotransmitter levels. L-DOPA is prone to auto-oxidation and reactive intermediates of its degradation including reactive oxygen species (ROS) have been implicated in cellular damage. In this study, we investigated how oxygen tension effects L-DOPA stability. We applied oxygen tensions comparable to those in the mammalian brain and demonstrated that 2% oxygen almost completely stopped its auto-oxidation. L-DOPA even exerted a ROS scavenging function. Further mechanistic analysis indicated that L-DOPA reprogrammed mitochondrial metabolism and reduced oxidative phosphorylation, depolarized the mitochondrial membrane, induced reductive glutamine metabolism, and depleted the NADH pool. These results shed new light on the cellular effects of L-DOPA and its neuro-toxicity under physiological oxygen levels that are very distinct to normoxic in vitro conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257685 | PMC |
http://dx.doi.org/10.1038/s41420-021-00547-4 | DOI Listing |
Biomater Sci
January 2025
Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India.
Parkinson's disease (PD) is a progressive neurological condition characterized by both dopaminergic and non-dopaminergic brain cell loss. Patients with Parkinson's disease have tremors as a result of both motor and non-motor symptoms developing. Idiopathic Parkinson's disease (idiopathic PD) prevalence is increasing in people over 60.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: Trans-sodium crocetinate (TSC) is one of the crocetin derivations that is more soluble and stable than crocetin and its cis form. It easily crosses the blood-brain barrier. TSC has neuroprotective effects.
View Article and Find Full Text PDFBraz J Biol
January 2025
Universidade Federal da Paraíba, João Pessoa, PB, Brasil.
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, which leads to a reduction in the production of dopamine. Medication with levodopa becomes less effective as the disease progresses. Despite the excellent results observed in clinical practice with the medicinal use of Cannabis in the treatment of PD, the level of scientific evidence is still limited due to the small number of studies published in this field.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital (The Neuro), 3801 University St, Montreal, QC, H3A 2B4, Canada.
L-3,4-dihydroxyphenylalanine (L-DOPA) remains the main treatment for motor symptoms of Parkinson's disease (PD). However, chronic use is associated with the development of complications such as L-DOPA-induced dyskinesia. We previously demonstrated that LY-487,379, a highly selective metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulator (PAM), reduces the severity of L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD, without interfering with the anti-parkinsonian action of L-DOPA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!