Alternative promoter usage generates long and short isoforms (DCLK1-L and DCLK1-S) of doublecortin-like kinase-1 (DCLK1). Tight control of Notch signaling is important to prevent and restitute inflammation in the intestine. Our aim was to investigate whether Notch1-DCLK1 axis regulates the mucosal immune responses to infection and whether this is phenocopied in human models of colitis. In the FFPE (formalin-fixed paraffin-embedded) sections prepared from the colons of ulcerative colitis (UC) and immune-mediated colitis (IRAEC) patients, expression of DCLK1 isoforms correlated positively with Notch1 and negatively with a transcriptional repressor, FoxD3 (Forkhead Box D3). DCLK1 protein staining in these sections was predominantly sub-epithelial (stromal) wherein DCLK1 co-localized with NICD, CD68, CD11c, and neutrophil elastase (NE). NE also co-stained with Citrullinated-H3 indicating the presence of neutrophil extracellular traps. In human neutrophils, elevated levels of DCLK1-S, CXCL-10, Ly6G, MPO, NE, and Notch1/2 in LPS-treated cells were inhibited when LPS was added in conjunction with Notch blocker dibenzazepine (DBZ; LPS + DBZ group). In CR-infected Rag1 mice, higher levels of DCLK1 in the colonic crypts were inhibited when mice received DBZ for 10 days coincident with significant dysbiosis, barrier disruption, and colitis. Concurrently, DCLK1 immunoreactivity shifted toward the stroma in CR + DBZ mice with predominance of DCLK1-S that coincided with higher Notch1 levels. Upon antibiotic treatment, partial restoration of crypt DCLK1, reduction in MPO activity, and increased survival followed. When intestinal epithelial cell-specific Dclk1-knockout (Dclk1) or Dclk1;Rag1 double knockout (DKO) mice were infected with CR and given a single dose of DBZ, they developed barrier defect and severe colitis with higher levels of stromal DCLK1-S, Ly6G, NE, and Notch1. We therefore propose that, by regulating the mucosal immune responses, the Notch-DCLK1 axis may be integral to the development of murine or human colitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257684 | PMC |
http://dx.doi.org/10.1038/s41420-021-00526-9 | DOI Listing |
J Virol
November 2024
College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
Unlabelled: Co-infection with oncogenic retrovirus and herpesvirus significantly facilitates tumor metastasis in human and animals. Co-infection with avian leukosis virus subgroup J (ALV-J) and Marek's disease virus (MDV), which are typical oncogenic retrovirus and herpesvirus, respectively, leads to enhanced oncogenicity and accelerated tumor formation, resulting in increased mortality of affected chickens. Previously, we found that ALV-J and MDV cooperatively promoted tumor metastasis.
View Article and Find Full Text PDFJ Histochem Cytochem
October 2024
Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC.
Background & Aims: Intestinal tuft cells have recently been the interest of studies in several human gastrointestinal diseases. However, the impact of tuft cell deletion on intestinal physiological functions are not fully understood. This study investigated the effects of acute tuft cell loss on nutrient absorption and cell lineage differentiation.
View Article and Find Full Text PDFSci Signal
September 2024
Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.
Doublecortin-like kinase 1 (DCLK1) is a proposed driver of gastric cancer (GC) that phosphorylates serine and threonine residues. Here, we showed that the kinase activity of DCLK1 orchestrated cancer cell-intrinsic and-extrinsic processes that led to pro-invasive and pro-metastatic reprogramming of GC cells. Inhibition of the kinase activity of DCLK1 reduced the growth of subcutaneous xenograft tumors formed from MKN1 human gastric carcinoma cells in mice and decreased the abundance of the stromal markers α-Sma, vimentin, and collagen.
View Article and Find Full Text PDFbioRxiv
October 2024
Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA.
expression defines a rare population of cells in the normal pancreas whose frequency is increased at early stages of pancreatic tumorigenesis. The identity and the precise roles of expressing cells in pancreas have been matter of debate, although evidence suggests their involvement in a number of key functions, including regeneration and neoplasia. We employed a recently developed Dclk1 reporter mouse model and single cell RNAseq analysis to define expressing cells in normal pancreas and pancreatic neoplasia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!