The tuberomamillary nucleus (TMN) is located within the posterior part of the hypothalamus. The histamine neurons in it synthesize histamine by means of the key enzyme histidine decarboxylase (HDC) and from the TMN, innervate a large number of brain areas, such as the cerebral cortex, hippocampus, amygdala as well as the thalamus, hypothalamus, and basal ganglia. Brain histamine is reduced to an inactivated form, tele-methylhistamine (t-MeHA), by histamine N-methyltransferase (HMT). In total, there are four types of histamine receptors (HRs) in the brain, all of which are G-protein coupled. The histaminergic system controls several basal physiological functions, including the sleep-wake cycle, energy and endocrine homeostasis, sensory and motor functions, and cognitive functions such as attention, learning, and memory. Histaminergic dysfunction may contribute to clinical disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, narcolepsy type 1, schizophrenia, Tourette syndrome, and autism spectrum disorder. In the current chapter, we focus on the role of the histaminergic system in these neurological/neuropsychiatric disorders. For each disorder, we first discuss human data, including genetic, postmortem brain, and cerebrospinal fluid studies. Then, we try to interpret the human changes by reviewing related animal studies and end by discussing, if present, recent progress in clinical studies on novel histamine-related therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-820107-7.00024-0 | DOI Listing |
Elife
October 2024
GIGA-CRC Human Imaging, University of Liège, Liège, Belgium.
Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.
View Article and Find Full Text PDFSci Rep
May 2024
Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy.
Several lines of evidence demonstrate that the brain histaminergic system is fundamental for cognitive processes and the expression of memories. Here, we investigated the effect of acute silencing or activation of histaminergic neurons in the hypothalamic tuberomamillary nucleus (TMN neurons) in vivo in both sexes in an attempt to provide direct and causal evidence of the necessary role of these neurons in recognition memory formation and retrieval. To this end, we compared the performance of mice in two non-aversive and non-rewarded memory tests, the social and object recognition memory tasks, which are known to recruit different brain circuitries.
View Article and Find Full Text PDFNeuropharmacology
September 2022
Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
Histaminergic (HA) neurons are located in the tuberomamillary nucleus (TMN) of the posterior hypothalamus, from where they project throughout the whole brain to control wakefulness. We examined the effects of N-oleoylhistamine (OLHA), a non-enzymatic condensation product of oleic acid (OLA) and histamine, on activity of mouse HA neurons in brain slices. OLHA bidirectionally modulated the firing of HA neurons.
View Article and Find Full Text PDFPeptides
April 2022
Institute of Neural and Sensory Physiology, Heinrich-Heine-University, Medical Faculty, D-40225, Düsseldorf, Germany.
Substance P (SP), a product of the tachykinin 1 (Tac1) gene, is expressed in many hypothalamic neurons. Its wake-promoting potential could be mediated through histaminergic (HA) neurons of the tuberomamillary nucleus (TMN), where functional expression of neurokinin receptors (NKRs) waits to be characterized. As in the process of nociception in the peripheral nervous system (PNS) capsaicin-receptor (transient potential vanilloid 1: TRPV1) signalling is amplified by local release of histamine and SP, we tested the involvement of tachykinins in the capsaicin-induced long-lasting enhancement (LLEcaps) of HA neurons firing by investigating selective neurokinin receptor ligands in the hypothalamic mouse brain slice preparation using patch-clamp recordings in cell-attached mode combined with single-cell RT-PCR.
View Article and Find Full Text PDFSci Rep
September 2021
Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan.
Designer receptor activated by designer drugs (DREADDs) techniques are widely used to modulate the activities of specific neuronal populations during behavioural tasks. However, DREADDs-induced modulation of histaminergic neurons in the tuberomamillary nucleus (HA neurons) has produced inconsistent effects on the sleep-wake cycle, possibly due to the use of Hdc-Cre mice driving Cre recombinase and DREADDs activity outside the targeted region. Moreover, previous DREADDs studies have not examined locomotor activity and aggressive behaviours, which are also regulated by brain histamine levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!