Engineering 2D approaches fibrous platform incorporating turmeric and polyaniline nanoparticles to predict the expression of βIII-Tubulin and TREK-1 through qRT-PCR to detect neuronal differentiation of PC12 cells.

Mater Sci Eng C Mater Biol Appl

Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. Electronic address:

Published: August 2021

The bioengineering electroactive construct of a nerve-guided conduit for repairing and restoring injured nerves is an exciting biomedical endeavor that has implications for the treatment of peripheral nerve injury. In this study, we report the development the polycaprolactone (PCL) nanofibrous substrate consisting of turmeric (TUR) and polyaniline nanoparticles (PANINPs) exhibits topological and biological features that mimics the natural extracellular matrix (ECM) for nerve cells. We evaluated the morphology of 2-dimensional (2D) fibrous substrates, and their ability of stem cell adhesion, growth and proliferation rate were influenced by use of various concentrations of turmeric in PCL-TUR substrates. The results showed that 0.62 wt% of TUR and 0.28 wt% of PANINPs in PCL nanofibers substrate exhibited the optimal cellular microenvironment to accelerate PC12 cellular activities. The in vitro experiments revealed that PCL-TUR@PANI substrates significantly stimulated the proliferation, differentiation, and spontaneous outgrowth and extension of neurites from the cells. The substrate has the capacity to respond directly to neuronal markers with significant upregulation of βIII-Tubulin and TREK-1 through myelination, and also trigger neurotrophic protein expression, which was confirmed via immunocytochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. This study provides a new technique to design substrate of nerve tissue-specific microenvironment for peripheral nerve cell regeneration and could offer promising biomaterials for in vivo peripheral nerve repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112176DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
12
polyaniline nanoparticles
8
βiii-tubulin trek-1
8
nerve
5
engineering approaches
4
approaches fibrous
4
fibrous platform
4
platform incorporating
4
incorporating turmeric
4
turmeric polyaniline
4

Similar Publications

This study aimed to quantitatively evaluate peripheral nerve injury (PNI) after varicose vein (VV) surgery using endovenous laser ablation (EVLA). Overall, 25 cases were analyzed. All patients underwent EVLA of the great saphenous vein (GSV) with or without resection of the varix of the GSV tributaries in stab and avulsion fashion (microphlebectomy).

View Article and Find Full Text PDF

Persistent numbness of the lower lip and chin due to inferior alveolar nerve injury after implant placement: A clinical report.

Prim Dent J

December 2024

Ilser Turkyilmaz DMD, PhD Associate Dean of Digital Innovation, Professor and Chair, Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA.

The number of dental implants placed and restored every year is increasing across the world. However, there has been an increase in the number of reports with implant-related surgical complications in which the inferior alveolar nerve injury is the most serious one. This surgical problem can be avoided by using cone beam computed tomography (CBCT), three-dimensional (3D) implant planning software, and computer-aided design and computer-aided manufacturing (CAD-CAM) technology such as stereolithographic surgical guides.

View Article and Find Full Text PDF

The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration.

J Nanobiotechnology

December 2024

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.

Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!