Study of chondroitin sulfate E oligosaccharide as a promising complement C5 inhibitor for osteoarthritis alleviation.

Mater Sci Eng C Mater Biol Appl

Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:

Published: August 2021

Osteoarthritis (OA) is a degenerative joint disease which is highly prevalent worldwide. However, no therapy for blocking OA pathogenesis is available currently. In this study, chondroitin sulfate (CS) E oligosaccharides were prepared and we identified disaccharide as the functional unit showing the strongest anti-complement activity and screened out complement C5 as its target in the complement system. We determined that CS-E disaccharide produced anti-inflammatory effects to treat OA by regulating the complement system: it inhibited the formation of complement-dependent complexes such as the membrane-attack complex (MAC) by targeting C5 and suppressed MAC-induced protein expression and the activation of downstream MAPK and NF-κB signaling pathways accordingly. By identifying CS-E disaccharide which could be regarded as a complement regulator or inhibitor exhibiting high anti-complement activity and revealing its OA-alleviating mechanism, this study not only provides a new strategy for OA treatment and drug development, but also potentially offers a promising C5 target therapy for other associated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112234DOI Listing

Publication Analysis

Top Keywords

study chondroitin
8
chondroitin sulfate
8
anti-complement activity
8
complement system
8
cs-e disaccharide
8
complement
5
sulfate oligosaccharide
4
oligosaccharide promising
4
promising complement
4
complement inhibitor
4

Similar Publications

Glutathione-scavenging natural-derived ferroptotic nano-amplifiers strengthen tumor therapy through aggravating iron overload and lipid peroxidation.

J Control Release

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China. Electronic address:

Nanomedicine-driven ferroptosis has emerged as a promising tumor treatment strategy through delivering exogenous iron and aggravating the lethal accumulation of lipid peroxides (LPO). However, the compensatory mechanisms of ferroptosis defense systems in cancer cells compromise the therapeutic efficacy and lead to potential side effects. Herein, a highly effective ferroptotic nano-amplifier is designed to synergistically promote ferroptosis via increasing intracellular labile iron, exacerbating lipid peroxidation and overcoming the defense system.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) play a pivotal role in pathogen attachment and entry into host cells, where the interaction with GAGs is critical for a diverse range of bacteria and viruses. This study focuses on elucidating the specific interactions between sulfated GAGs and the adhesin OmcB (Outer membrane complex protein B) of Chlamydia species, examining how structural characteristics of GAGs, such as sulfation degree and molecular weight, influence their binding affinity and thereby affect bacterial infectivity. A surface-based binding assay is established to determine the binding constants of OmcB with various GAGs.

View Article and Find Full Text PDF

Cadmium promotes hyaluronan synthesis by inducing hyaluronan synthase 3 expression in cultured vascular endothelial cells via the c-Jun N-terminal kinase-c-Jun pathway.

Toxicology

January 2025

Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan. Electronic address:

Cadmium is a heavy metal risk factor for various cardiovascular diseases, such as atherosclerosis. In atherosclerotic lesions, hyaluronan, a glycosaminoglycan consisting of β4-glucuronic acid-β3-N-acetylglucosamine disaccharides repeats, is highly accumulated, regulating signal transduction, cell migration, and angiogenesis. Hyaluronan is synthesized by hyaluronan synthase (HAS)1-3 in the plasma membrane and secreted into the extracellular space.

View Article and Find Full Text PDF

Glycosylation profiling of monkeypox virus structural proteins with poly Ser-Arg materials.

Analyst

January 2025

Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

Although the glycosylation of viral proteins plays a critical role in the process of viral invasion into host cells, studies on the glycosylation of monkeypox virus (MPXV) structural proteins have not yet been reported. To investigate the importance of MPXV protein glycosylation, poly Ser-Arg (poly SR) materials capable of simultaneously enriching both -glycopeptides and -glycopeptides were synthesized by surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. The poly SR materials were evaluated using the digest mixture of standard proteins containing bovine fetuin and bovine serum albumin, and the digest of complex biological samples including bovine sperm tail lysate, mouse sperm tail lysate, mouse brain lysate, and human serum.

View Article and Find Full Text PDF

Anti-obesity and gut microbiota modulation effects of chondroitin sulfate on obese mice induced by high-fat diet.

Int J Biol Macromol

January 2025

Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, Henan, China. Electronic address:

Despite the extensive application of chondroitin sulfate (CS), a type of biological macromolecule, in various fields, including biomedicine, cosmetics, food, and pharmaceuticals, research into its potential anti-obesity properties remains limited. In this study, the impacts of CS on obese mice induced by a high-fat diet (HFD) were investigated. The results showed that supplementing CS effectively controlled body weight gain and fat accumulation (perirenal fat and epididymal fat) compared to the control group of obese mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!