Osteoformation potential of an allogenic partially demineralized bone matrix in critical-size defects in the rat calvarium.

Mater Sci Eng C Mater Biol Appl

CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France; Service of Odontology, Hôpital Pitié-Salpêtrière APHP, U.F.R. of Odontology University of Paris, 47-83 Boulevard de l'Hôpital, 75013 Paris, France. Electronic address:

Published: August 2021

Allogenic demineralized bone matrix has been developed as a reliable alternative to the autologous bone graft. In the present study, we assessed the osteoformation potential of a partially demineralized bone matrix (PDBM) in a paste form obtained without an added carrier. This formulation included the preparation of cancelous bone from femoral heads after decellularision, delipidation, demineralization in HCl and autoclaving at 121 °C. Structural and biochemical characteristics of PDBM were determined using FTIR (Fourier transform infrared spectroscopy), hydroxyproline, DNA content assays, and optical ellipsometry. The osteoformation potential was evaluated in 8-, 6-, and 4-mm-diameter rat-calvarial bone defects by in vivo micro-CT analysis, performed immediately after surgery on days 0, 15, 30, 45, and 60. Moreover, histological and histomorphometric analyses were done on day 60. PDBM was compared to cancelous bone powder (BP) before its partial demineralization. The expression levels of selected inflammation-, angiogenesis-, and bone-related genes were also investigated by RT-PCR, 3, 7, and 14 days after surgery. Compared to the control group, the PDBM group exhibited a significant increase (p < 0.05) in radiopacity in 8-mm- and 6-mm-diameter defects at all time points tested. On day 60, the amount of newly-formed bone was greater (16 and 1.6 folds; p < 0.001; respectively) compared to that in control defects. No bone formation was observed in defects filled with BP regardeless of the size. In 8-mm-diameter defect, PDBM was effective enough to induce the upregulation of genes pertinent to inflammation (i.e., TNFα, IL-6, and IL-8), angiogenesis (i.e., VEGF, VWF), and osteogenesis (ALP, RUNX2, BGLAP, SP7) by day 3 after surgery. This study showed that the tested PDBM deeply influences the early critical events involved in bone regeneration and exhibits efficient osteoformation capacity, making it an attractive graft option for treating defects in periodontal and maxillofacial areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112207DOI Listing

Publication Analysis

Top Keywords

osteoformation potential
12
demineralized bone
12
bone matrix
12
partially demineralized
8
cancelous bone
8
bone
7
potential allogenic
4
allogenic partially
4
matrix critical-size
4
critical-size defects
4

Similar Publications

Article Synopsis
  • * Recent research has focused on understanding how these bone cells grow and change, aiming to identify targets for new treatments.
  • * Cation-Cl cotransporters (CCCs) are important ion transport systems in bone cells that influence calcium and phosphate transport, yet they have received limited attention despite their potential role in treating bone-related conditions.
View Article and Find Full Text PDF

A phenylalanine (Phe)-restricted diet is indispensable to control the blood Phe for individuals with phenylketonuria (PKU), who are also confronted with progressive bone impairment. Thus, the development of a low-Phe protein substitute that could positively regulate bone metabolism is desired for their bone health. Our previous study reported the preparation of a low-Phe containing whey hydrolysate (LPH) from a selected whey protein hydrolysate (TAH).

View Article and Find Full Text PDF

Osteoformation potential of an allogenic partially demineralized bone matrix in critical-size defects in the rat calvarium.

Mater Sci Eng C Mater Biol Appl

August 2021

CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France; Service of Odontology, Hôpital Pitié-Salpêtrière APHP, U.F.R. of Odontology University of Paris, 47-83 Boulevard de l'Hôpital, 75013 Paris, France. Electronic address:

Allogenic demineralized bone matrix has been developed as a reliable alternative to the autologous bone graft. In the present study, we assessed the osteoformation potential of a partially demineralized bone matrix (PDBM) in a paste form obtained without an added carrier. This formulation included the preparation of cancelous bone from femoral heads after decellularision, delipidation, demineralization in HCl and autoclaving at 121 °C.

View Article and Find Full Text PDF

Miroestrol (MR) is a highly active phytoestrogen isolated from tuberous root of Pueraria candollei var. mirifica (PM). Modulatory effects of PM and MR on osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) mRNAs which are bone-specific genes were investigated in ovariectomized female ICR mice.

View Article and Find Full Text PDF

[Juvenile osteoporosis].

Arch Pediatr

April 2008

Service de réanimation, hôpital Robert-Debré, 48 boulevard Sérurier, Paris, France.

Osteoporosis is induced by a disorder of the bone turnover that generates an accelerated destruction process and leads to the rarefaction of the protein matrix. The RANK-L/RANK/OPG system is the main actor of the bone remodelling regulation. Juvenile osteoporoses may have primary or secondary aetiologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!