Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review.

Mater Sci Eng C Mater Biol Appl

Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India. Electronic address:

Published: August 2021

AI Article Synopsis

  • The search for new cancer treatment agents is driven by the limitations of traditional therapies and the complexities of cancer, such as mutations and individual patient differences.
  • The development of theranostic nanoparticles (TNPs), which combine therapeutic and diagnostic functions, has gained significant momentum over the past 20 years, offering new hope for effective cancer treatment.
  • TNPs, including various types like mesoporous silica and magnetic nanoparticles, address conventional shortcomings by allowing targeted drug delivery and real-time monitoring at cancer sites, enhancing their overall therapeutic efficacy.

Article Abstract

Modern-day search for the novel agents (their preparation and consequent implementation) to effectively treat the cancer is mainly fuelled by the historical failure of the conventional treatment modalities. Apart from that, the complexities such as higher rate of cell mutations, variable tumor microenvironment, patient-specific disparities, and the evolving nature of cancers have made this search much stronger in the latest times. As a result of this, in about two decades, the theranostic nanoparticles (TNPs) - i.e., nanoparticles that integrate therapeutic and diagnostic characteristics - have been developed. The examples for TNPs include mesoporous silica nanoparticles, luminescence nanoparticles, carbon-based nanomaterials, metal nanoparticles, and magnetic nanoparticles. These TNPs have emerged as single and powerful cancer-treating multifunctional nanoplatforms, as they widely provide the necessary functionalities to overcome the previous/conventional limitations including lack of the site-specific delivery of anti-cancer drugs, and real-time continuous monitoring of the target cancer sites while performing therapeutic actions. This has been mainly possible due to the association of the as-developed TNPs with the already-available unique diagnostic (e.g., luminescence, photoacoustic, and magnetic resonance imaging) and therapeutic (e.g., photothermal, photodynamic, hyperthermia therapy) modalities in the biomedical field. In this review, we have discussed in detail about the recent developments on the aforementioned important TNPs without/with targeting ability (i.e., attaching them with ligands or tumor-specific antibodies) and also the strategies that are implemented to increase their tumor accumulation and to enhance their theranostic efficacies for effective biomedical cancer treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112199DOI Listing

Publication Analysis

Top Keywords

theranostic nanoparticles
8
biomedical cancer
8
cancer treatments
8
nanoparticles tnps
8
nanoparticles
7
tnps
5
multifunctional theranostic
4
nanoparticles biomedical
4
cancer
4
treatments comprehensive
4

Similar Publications

Investigating the delivery of PD-L1-targeted immunoliposomes in a dynamic cervical cancer-on-a-chip model.

J Control Release

January 2025

Precision Medicine in Oncology (PrMiO), and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands. Electronic address:

The recent approval of pembrolizumab in recurrent or metastatic cervical cancer warrants further investigations into the usefulness of immunotherapies for more durable and less radical interventions. In this study, the targeting potential of anti-PD-L1-functionalized immunoliposomes was tested in a 3D in vitro cervical cancer-on-a-chip model. Immunolipsomes were synthesized and decorated externally with monovalent anti-PD-L1 Fab' fragments of commercially available atezolizumab.

View Article and Find Full Text PDF

Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies.

View Article and Find Full Text PDF

Upconverting/magnetic Janus-like nanoparticles integrated into spiropyran micelle-like nanocarriers for NIR light- and pH- responsive drug delivery, photothermal therapy and biomedical imaging.

Colloids Surf B Biointerfaces

January 2025

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:

The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.

View Article and Find Full Text PDF

Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.

View Article and Find Full Text PDF

Theranostic agents hold great promise for personalized medicine by combining diagnostic and therapeutic functions. Herein, two novel multifunctional theranostic glyconanoprobes targeting breast cancer were engineered for synergistic dual chemo-gene therapy and triple chemo-gene-photothermal therapy. Upconversion nanoparticles (UCNPs) were prepared and coated with a Dox-loaded glycopeptide polymer (P-Dox) to form UCNP@P-Dox for improving stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!