A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Betulinic acid attenuates T-2 toxin-induced cytotoxicity in porcine kidney cells by blocking oxidative stress and endoplasmic reticulum stress. | LitMetric

Betulinic acid attenuates T-2 toxin-induced cytotoxicity in porcine kidney cells by blocking oxidative stress and endoplasmic reticulum stress.

Comp Biochem Physiol C Toxicol Pharmacol

Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China. Electronic address:

Published: November 2021

T-2 toxin is highly cytotoxic to animals, which causes damage to animal health and great economic losses to agriculture and livestock production. Betulinic acid (BA), a naturally occurring pentacyclic lupane-type triterpenoid, has various biological and medicinal activities in vivo and in vitro. The objective of the present study was to investigate the toxic effects of T-2 toxin and the reversal effect of BA on porcine kidney (PK-15) cells. We evaluated T-2 toxin-induced apoptotic responses via oxidative stress and endoplasmic reticulum stress pathways by assessing the repair effect of BA in PK-15 cells. The results proved that T-2 toxin (1 μM, treated for 24 h) is highly toxic to PK-15 cells. After pre-treatment with BA (0.25, 0.5, and 1 μM) for 24 h, the cell viabilities were significantly increased, and the lactate dehydrogenase (LDH) in the culture media was dramatically decreased compared to that in the T-2 toxin treatment group. BA also enhanced the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT) and reduced the production of reactive oxygen species (ROS) and malondialdehyde (MDA) in cells. BA also dose-dependently increased the expression of glucose regulated protein (GRP78), reduced expression of activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), the phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2α (eIF2α), and intracellular Ca concentration in a dose-dependent manner. In addition, BA significantly decreased the expression of cleaved-caspase-3 and caspase-12, consequently reducing T-2 toxin-induced PK-15 cell apoptosis in a dose-dependent manner. Collectively, we suggest that BA has a protective effect on T-2 toxin-induced cytotoxicity by ameliorating oxidative stress and endoplasmic reticulum stress in PK-15 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2021.109124DOI Listing

Publication Analysis

Top Keywords

t-2 toxin-induced
16
endoplasmic reticulum
16
t-2 toxin
16
pk-15 cells
16
oxidative stress
12
stress endoplasmic
12
reticulum stress
12
betulinic acid
8
t-2
8
toxin-induced cytotoxicity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!