A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prenatal hypoxia affects scaling of blood pressure and arterial wall mechanics in the common snapping turtle, Chelydra serpentina. | LitMetric

Prenatal hypoxia affects scaling of blood pressure and arterial wall mechanics in the common snapping turtle, Chelydra serpentina.

Comp Biochem Physiol A Mol Integr Physiol

Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX 76203-5220, USA. Electronic address:

Published: October 2021

In reptiles, exposure to hypoxia during embryonic development affects several cardiovascular parameters. These modifications may impose different mechanical stress to the arterial system, and we speculated that the arterial wall of major outflow vessels would be modified accordingly. Since non-crocodilian reptiles possess a partially divided ventricle, ensuing similar systemic and pulmonary systolic pressures, we investigated how morphological and mechanical properties of segments from the left aortic arch (LAo) and the proximal and distal segments of the left pulmonary artery (LPAp and LPAd, respectively) change as body mass (M) increases. Eggs from common snapping turtles, Chelydra serpentina, were incubated under normoxia (21% O; N21) or hypoxia (10% O; H10), hatched and maintained in normoxia thereafter. Turtles (0.11-6.85 kg) were cannulated to measure arterial pressures, and an injection of adrenaline was used to increase pressures. Portions of the LAo, LPAp and LPAd were fixed under physiological hydrostatic pressures for histology and mechanical assessment. Arterial pressures increased with M for N21 but not for H10. Although mechanical and functional characteristics from the LPAp and LPAd were similar between N21 and H10, wall thickness from LAo did not change with M in the H10 group, thus wall stress increased in larger turtles. This indicates that larger H10 turtles probably experience an elevated probability of arterial wall rupture without concomitant changes in the cardiovascular system to prevent it. Finally, collagen content of the LPAp and LAo was smaller than in LPAd, suggesting a more distensible arterial wall could attenuate higher pressures from larger turtles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2021.111023DOI Listing

Publication Analysis

Top Keywords

arterial wall
16
lpap lpad
12
common snapping
8
chelydra serpentina
8
segments left
8
arterial pressures
8
n21 h10
8
larger turtles
8
arterial
7
wall
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!