Molecular signaling of synthetic cannabinoids: Comparison of CB1 receptor and TRPV1 channel activation.

Eur J Pharmacol

Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA. Electronic address:

Published: September 2021

Recreational use of synthetic cannabinoids (SCs) is associated with desirable euphoric and relaxation effects as well as adverse effects including anxiety, agitation and psychosis. These SC-mediated actions represent a combination of potentiated cannabinoid receptor signaling and "off-target" receptor activity. The goal of this study was to compare the efficacy of various classes of SCs in stimulating CB receptors and activating "off-target" transient receptor potential (TRP) channels. Cannabinoid-type 1 (CB) receptor activity was determined by measuring SC activation of G protein-gated inward rectifier K (GIRK) channels using a membrane potential-sensitive fluorescent dye assay. SC opening of vanilloid type-1 (TRPV1) channels was measured by recording intracellular Ca transients. All of the SCs tested activated the GIRK channel with an efficacy of 4-fluoro MDMB-BUTINACA > 5-fluoro MDMB-PICA > MDMB-4en-PINACA ≈ WIN 55,212-2 > AB-FUBINACA > AM1220 ≈ JWH-122 N-(5-chloropentyl) > AM1248 > JWH-018 ≈ XLR-11 ≈ UR-144. The potency of the SCs at the CB receptor was 5-fluoro MDMB-PICA ≈ 4-fluoro MDMB-BUTINACA > AB-FUBINACA ≈ MDMB-4en-PINACA > JWH-018 > AM1220 > XLR-11 > JWH-122 N-(5-chloropentyl) > WIN 55,212-2 ≈ UR-144 > AM1248. In contrast, when tested at a SC concentration that produced a maximal effect on the G/GIRK channel, only XLR-11, UR-144 and AM1220 caused a significant activation of the TRPV1 channels. The TRPV1 channel/Ca signal measured during application of 10 μM XLR-11 was similar to the signal induced by the endocannabinoid N-arachidonoylethanolamine (AEA). Thus, while various SCs share the ability to stimulate CB receptor/G signaling, they display limited efficacy in opening TRPV1 channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374946PMC
http://dx.doi.org/10.1016/j.ejphar.2021.174301DOI Listing

Publication Analysis

Top Keywords

trpv1 channels
12
synthetic cannabinoids
8
receptor activity
8
receptor
6
trpv1
5
scs
5
channels
5
molecular signaling
4
signaling synthetic
4
cannabinoids comparison
4

Similar Publications

Dual-Enzyme-Instructed Peptide Self-Assembly to Boost Immunogenic Cell Death by Coordinating Intracellular Calcium Overload and Chemotherapy.

ACS Nano

January 2025

Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China.

The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection.

View Article and Find Full Text PDF

Efficacy and safety of transient receptor potential channel modulators for dry eye: A systematic review and meta-analysis.

Cont Lens Anterior Eye

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Baoshan Campus of Huashan Hospital, Fudan University, Shanghai, China. Electronic address:

Purpose: To investigate the efficacy and safety of transient receptor potential (TRP) channel modulators for dry eye.

Methods: A thorough search for randomized clinical trials was conducted in seven databases up to February 16, 2024. Suitable studies were identified according to inclusion and exclusion criteria, extracted data were synthesized and analyzed using Review Manager 5.

View Article and Find Full Text PDF

In the present study, the effects of the acetylcholinesterase (AChE) enzyme inhibitor rivastigmine (RIVA) on spike-wave discharges (SWDs), memory impairment, anxiety-like behavior, and the transient receptor potential vanilloid 1 (TRPV1) gene expression were investigated in genetic absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. After tripolar electrodes were implanted on the WAG/Rij rats' skulls, single doses of 0.125, 0.

View Article and Find Full Text PDF

Optimization and Calibration of 384-well Kinetic Ca Mobilization Assays for the Human Transient Receptor Potential Cation Channels TRPM8, TRPV1, and TRPA1.

SLAS Discov

December 2024

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA. Electronic address:

Development, optimization, and calibration of human transient receptor potential (TRP) channel Ca mobilization assays for TRPM8, TRPV1, and TRPA1 are described. Heterologous expression of hTRPM8 in HEK293T cells was required for anti-TRPM8 antibody staining and TRPM8 agonist induced Ca mobilization signals which were both used to optimize transfection efficiency. FLIPR Calcium 6 dye concentration, loading time, and TRPM8 transfected cell seeding density were optimized and a DMSO tolerance of ≤0.

View Article and Find Full Text PDF

Painful diabetic neuropathy commonly affects the peripheral nervous system in individuals with diabetes. However, the pathological processes and mechanisms underlying diabetic neuropathic pain remain unclear. We aimed to identify the overall profiles and screen for genes potentially involved in pain mechanisms using transcriptome analysis of the dorsal root ganglion of diabetic mice treated with streptozotocin (STZ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!