Purpose: The ultimate goal of this study is to develop a novel delivery system for a new potent cytotoxic compound, CCI-001, with anti-b tubulin activity, so that the drug can be effectively administered and at the same time its harmful side effects can be reduced.
Methods: In the current study, CCI-001 was loaded into serum albumin (SA), using a modified desolvation method, generating CCI-001-SA nanoparticles. Both bovine and human SA were used for the encapsulation of this drug candidate. Optimum conditions for drug loading were achieved when already formed and crosslinked albumin nanoparticles were incubated overnight at 37°C with CCI-001 solutions. The CCI-001-loaded albumin nanoparticles were assessed for average particle diameter and polydispersity, zeta potential, drug loading, in vitro release, morphology and cell toxicity against SW620 and HCT116 colorectal cancer cells.
Results: The spherical nanoparticles obtained were negatively charged (~ -30 mV) and had an average diameter of ~ 130 nm, with a narrow size distribution. The in vitro release of CCI-001 from the albumin nanoparticles showed a sustained release pattern over 24 hours without any initial burst release, compared to the fast release of the free drug under experimental conditions. No difference between the SA from the two species in terms of CCI-001 loading was observed. However, a significant difference was observed between the release profiles of CCI-001 from drug-loaded HSA and drug-loaded BSA nanoparticles with HSA nanoparticles showing slower drug release (mean release time, MRT, values of 5.14 ± 0.33 h and 6.88 ± 0.15 h for BSA-NPs and HSA-NPs, respectively, P < 0.01). Cellular toxicity studies showed higher cytotoxicity for CCI-001-SA compared to the free drug (IC50s of 0.62 ± 0.31 nM vs 2.06 ± 0.29 nM in SW620 cells and 0.9 ± 0.1 nM vs 4.2 ± 0.2 nM in HCT116 cells, for CCI-001-HSA NPs and free drug, respectively). Therefore, despite the low drug content level in the HSA nanoparticles of CCI-001, the formulation provides relevant concentrations for further in vivo studies in animal models due to high drug potency.
Conclusions: The data support the potential use of albumin as a nanocarrier for CCI-001 in biological systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18433/jpps31877 | DOI Listing |
Ann Surg Oncol
January 2025
Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Background: Benefits of neoadjuvant treatment for pancreatic cancer with major vessel invasion has been demonstrated through randomized controlled trials; however, the optimal neoadjuvant treatment strategy remains controversial, especially for radiotherapy. Therefore, we aimed to evaluate the efficacy and safety of neoadjuvant radiotherapy followed by chemotherapy and the optimal time interval to undergo surgery after radiotherapy in (borderline) resectable pancreatic cancer.
Methods: Between 2013 and 2022, patients with (borderline) resectable pancreatic cancer with vessel contact who received 5-fluorouracil with leucovorin, oxaliplatin, and irinotecan or gemcitabine and nanoparticle albumin-bound paclitaxel as initial treatment following surgery were included.
ACS Nano
January 2025
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore.
The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.
View Article and Find Full Text PDFBioeng Transl Med
January 2025
Polymeric micro- and nanoparticles are useful vehicles for delivering cytokines to diseased tissues such as solid tumors. Double emulsion solvent evaporation is one of the most common techniques to formulate cytokines into vehicles made from hydrophobic polymers; however, the liquid-liquid interfaces formed during emulsification can greatly affect the stability and therapeutic performance of encapsulated cytokines. To develop more effective cytokine-delivery systems, a clear molecular understanding of the interactions between relevant proteins and solvents used in the preparation of such particles is needed.
View Article and Find Full Text PDFBiomater Adv
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland. Electronic address:
The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!