Purpose: Radiation pneumonitis (RP) is the main source of toxicity in thoracic radiotherapy. This study proposed a deep learning-based dual-omics model, which aims to improve the RP prediction performance by integrating more data points and exploring the data in greater depth.

Materials And Methods: The bimodality data were the original dose (OD) distribution and the ventilation image (VI) derived from four-dimensional computed tomography (4DCT). The functional dose (FD) distribution was obtained by weighting OD with VI. A pre-trained three-dimensional convolution (C3D) network was used to extract the features from FD, VI, and OD. The extracted features were then filtered and selected using entropy-based methods. The prediction models were constructed with four most commonly used binary classifiers. Cross-validation, bootstrap, and nested sampling methods were adopted in the process of training and hyper-tuning.

Results: Data from 217 thoracic cancer patients treated with radiotherapy were used to train and validate the prediction model. The 4DCT-based VI showed the inhomogeneous pulmonary function of the lungs. More than half of the extracted features were singular (of none-zero value for few patients), which were eliminated to improve the stability of the model. The area under curve (AUC) of the dual-omics model was 0.874 (95% confidence interval: 0.871-0.877), and the AUC of the single-omics model was 0.780 (0.775-0.785, VI) and 0.810 (0.804-0.811, OD), respectively.

Conclusions: The dual-omics outperformed single-omics for RP prediction, which can be contributed to: (1) using more data points; (2) exploring the data in greater depth; and (3) incorporating of the bimodality data.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.15079DOI Listing

Publication Analysis

Top Keywords

deep learning-based
8
learning-based dual-omics
8
prediction model
8
radiation pneumonitis
8
dual-omics model
8
data points
8
points exploring
8
exploring data
8
data greater
8
bimodality data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!