Zinc (Zn) is an essential micro-nutrient for humans, and Zn deficiency is of global concern. In addition to inherited and pathological Zn deficiencies, insufficient dietary intake is leading cause, especially in those consuming cereal grains as a stable food, in which Zn concentration and bioavailability are relatively low. To improve Zn levels in the human body, it is important to understand the accumulation and bioavailability of Zn in cereal grains. In recent years, knowledge on the molecular mechanisms underlying Zn uptake, transport, homeostasis, and deposition within cereal crops has been accumulating, paving the way for a more targeted approach to improving the nutrient status of crop plants. In this paper, we briefly review existing studies on the distribution and transport pathways of Zn in major small-grained cereals, using wheat as a case study. The findings confirm that Zn transport in plants is a complex physiological process mainly governed by Zn transporters and metal chelators. This work reviews studies on Zn uptake, transport, and deposition in wheat plants, summarizes the possible barriers impairing Zn deposition in wheat grains, and describes strategies for increasing Zn concentration in wheat grains.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2021.1920883DOI Listing

Publication Analysis

Top Keywords

cereal grains
12
uptake transport
8
deposition wheat
8
wheat grains
8
grains
6
transport
5
wheat
5
zinc cereal
4
grains concentration
4
concentration distribution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!