Objective: To compare the diagnostic performance of a conventional metal artifact suppression sequence MAVRIC-SL (multi-acquisition variable-resonance image combination selective) and a novel 2.6-fold faster sequence employing robust principal component analysis (RPCA), in the MR evaluation of hip implants at 3 T.
Materials And Methods: Thirty-six total hip implants in 25 patients were scanned at 3 T using a conventional MAVRIC-SL proton density-weighted sequence and an RPCA MAVRIC-SL proton density-weighted sequence. Comparison was made of image quality, geometric distortion, visualization around acetabular and femoral components, and conspicuity of abnormal imaging findings using the Wilcoxon signed-rank test and a non-inferiority test. Abnormal findings were correlated with subsequent clinical management and intraoperative findings if the patient underwent subsequent surgery.
Results: Mean scores for conventional MAVRIC-SL were better than RPCA MAVRIC-SL for all qualitative parameters (p < 0.05), although the probability of RPCA MAVRIC-SL being clinically useful was non-inferior to conventional MAVRIC-SL (within our accepted 10% difference, p < 0.05), except for visualization around the acetabular component. Abnormal imaging findings were seen in 25 hips, and either equally visible or visible but less conspicuous on RPCA MAVRIC-SL in 21 out of 25 cases. In 4 cases, a small joint effusion was queried on MAVRIC-SL but not RPCA MAVRIC-SL, but the presence or absence of a small effusion did not affect subsequent clinical management and patient outcome.
Conclusion: While the overall image quality is reduced, RPCA MAVRIC-SL allows for significantly reduced scan time and maintains almost equal diagnostic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727641 | PMC |
http://dx.doi.org/10.1007/s00256-021-03848-y | DOI Listing |
Magn Reson Imaging
September 2024
Department of Radiology, Stanford University, Lucas MRS Center, 1201 Welch Road, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Stanford University, 430 Broadway Street, MC: 6342, Pavilion C, 4th Floor, Redwood City, CA 94063, USA. Electronic address:
Skeletal Radiol
March 2022
Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305-5105, USA.
Objective: To compare the diagnostic performance of a conventional metal artifact suppression sequence MAVRIC-SL (multi-acquisition variable-resonance image combination selective) and a novel 2.6-fold faster sequence employing robust principal component analysis (RPCA), in the MR evaluation of hip implants at 3 T.
Materials And Methods: Thirty-six total hip implants in 25 patients were scanned at 3 T using a conventional MAVRIC-SL proton density-weighted sequence and an RPCA MAVRIC-SL proton density-weighted sequence.
Magn Reson Imaging
October 2020
GE Healthcare, MR Apps. and Workflow, Waukesha, WI, USA.
Objectives: To assess the clinical utility of a prototype sequence for metal artifact reduction, the multiacquisition variable-resonance image combination selective (MAVRIC-SL) at 3 T. This sequence allows a surgical prosthesis-dependent reduction in the number of spectral bins. We compared the prototype MAVRIC SL to the conventional two-dimensional fast spin-echo (FSE) sequences and MAVRIC SL images acquired with all spectral bins to those acquired with the optimized number of spectral bins.
View Article and Find Full Text PDFEur J Hybrid Imaging
April 2020
Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
Background: PET/MRI has a high potential in oncology imaging, especially for tumor indications where high soft tissue contrast is crucial such as genitourinary tumors. One of the challenges for PET/MRI acquisition is handling of metal implants. In addition to conventional methods, more innovative techniques have been developed to reduce artifacts caused by those implants such as the selective multiacquisition variable-image combination (MAVRIC-SL).
View Article and Find Full Text PDFAJR Am J Roentgenol
December 2019
Department of Radiology and Imaging, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021.
The objective of our study was to compare the quality and diagnostic utility of the following three metal artifact reduction sequences in evaluating hip arthroplasties: conventional multiacquisition variable-resonance image combination selective (MAVRIC SL), isotropic MAVRIC SL, and reduced-TR isotropic MAVRIC SL. Ninety-three hip arthroplasties (85 total hip replacements and eight hip resurfacings [nine bilateral hips]) in 84 patients (38 men and 46 women; mean age ± SD, 69.1 ± 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!