Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Within the plant and Earth sciences, stable isotope analysis is a versatile tool conveying information (inter alia) about plant physiological and paleoclimate variability across scales. Here, we identify a 13C signal (i.e. systematic 13C/12C variation) at tree-ring glucose C-4 and report an experimentally testable theory on its origin. We propose the signal is introduced by glyceraldehyde-3-phosphate dehydrogenases in the cytosol of leaves. It conveys two kinds of (potentially convoluted) information: (i) commitment of glyceraldehyde 3-phosphate to 3-phosphoglycerate versus fructose 1,6-bisphosphate metabolism; and (ii) the contribution of non-phosphorylating versus phosphorylating glyceraldehyde-3-phosphate dehydrogenase to catalysing the glyceraldehyde 3-phosphate to 3-phosphoglycerate forward reaction of glycolysis. The theory is supported by 13C fractionation modelling. Modelling results provide the first evidence in support of the cytosolic oxidation-reduction (COR) cycle, a carbon-neutral mechanism supplying NADPH at the expense of ATP and NADH, which may help to maintain leaf-cytosolic redox balances. In line with expectations related to COR cycling, we found a positive correlation between air vapour pressure deficit and 13C discrimination at glucose C-4. Overall, 13C-4 signal analysis may enable an improved understanding of leaf carbon and energy metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547152 | PMC |
http://dx.doi.org/10.1093/jxb/erab316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!