Introduction: Ultrahigh-density mapping for ventricular tachycardia (VT) is increasingly used. However, manual annotation of local abnormal ventricular activities (LAVAs) is challenging in this setting. Therefore, we assessed the accuracy of the automatic annotation of LAVAs with the Lumipoint algorithm of the Rhythmia system (Boston Scientific).

Methods And Results: One hundred consecutive patients undergoing catheter ablation of scar-related VT were studied. Areas with LAVAs and ablation sites were manually annotated during the procedure and compared with automatically annotated areas using the Lumipoint features for detecting late potentials (LP), fragmented potentials (FP), and double potentials (DP). The accuracy of each automatic annotation feature was assessed by re-evaluating local potentials within automatically annotated areas. Automatically annotated areas matched with manually annotated areas in 64 cases (64%), identified an area with LAVAs missed during manual annotation in 15 cases (15%), and did not highlight areas identified with manual annotation in 18 cases (18%). Automatic FP annotation accurately detected LAVAs regardless of the cardiac rhythm or scar location; automatic LP annotation accurately detected LAVAs in sinus rhythm, but was affected by the scar location during ventricular pacing; automatic DP annotation was not affected by the mapping rhythm, but its accuracy was suboptimal when the scar was located on the right ventricle or epicardium.

Conclusion: The Lumipoint algorithm was as/more accurate than manual annotation in 79% of patients. FP annotation detected LAVAs most accurately regardless of mapping rhythm and scar location. The accuracy of LP and DP annotations varied depending on mapping rhythm or scar location.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.15148DOI Listing

Publication Analysis

Top Keywords

automatic annotation
20
manual annotation
16
annotated areas
16
rhythm scar
16
scar location
16
accuracy automatic
12
automatically annotated
12
detected lavas
12
mapping rhythm
12
annotation
11

Similar Publications

Background: Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. The median overall survival time for patients who develop metastasis is approximately one year. In this study, we aim to leverage deep learning (DL) techniques to analyze digital cytopathology images and directly predict the 48 month survival status on a patient level.

View Article and Find Full Text PDF

Background: Establishing accurate, reliable, and convenient methods for enamel segmentation and analysis is crucial for effectively planning endodontic, orthodontic, and restorative treatments, as well as exploring the evolutionary patterns of mammals. However, no mature, non-destructive method currently exists in clinical dentistry to quickly, accurately, and comprehensively assess the integrity and thickness of enamel chair-side. This study aims to develop a deep learning work, 2.

View Article and Find Full Text PDF

Instance segmentation of surgical instruments is a long-standing research problem, crucial for the development of many applications for computer-assisted surgery. This problem is commonly tackled via fully-supervised training of deep learning models, requiring expensive pixel-level annotations to train. In this work, we develop a framework for instance segmentation not relying on spatial annotations for training.

View Article and Find Full Text PDF

Cervical cancer is one of the most prevalent cancers among women, posing a significant threat to their health. Early screening can detect cervical precancerous lesions in a timely manner, thereby enabling the prevention or treatment of the disease. The use of pathological image analysis technology to automatically interpret cells in pathological slices is a hot topic in digital medicine research, as it can reduce the substantial effort required from pathologists to identify cells and can improve diagnostic efficiency and accuracy.

View Article and Find Full Text PDF

Artificial intelligence improves bronchoscopy performance: a randomised crossover trial.

ERJ Open Res

January 2025

Copenhagen Academy for Medical Education and Simulation, Rigshospitalet, The Capital Region of Denmark, Copenhagen, Denmark.

Rationale: Flexible bronchoscopy is an operator-dependent procedure. An automatic bronchial identification system based on artificial intelligence (AI) could help bronchoscopists to perform more complete and structured procedures through automatic guidance.

Methods: 101 participants were included from six different continents at the European Respiratory Society annual conference in Milan, 9-13 September 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!