Production of mycosporine-like amino acid (MAA)-loaded emulsions as chemical barriers to control sunscald in fruits and vegetables.

J Sci Food Agric

Faculdade de Ciências Agrárias e Veterinárias (FCAV), Campus de Jaboticabal, Departamento de Ciências da Produção Agrícola, Universidade Estadual Paulista (UNESP), Jaboticabal, Brazil.

Published: January 2022

Background: Sunscald is a physiological disorder that occurs in many horticultural products when exposed to excessive solar radiation and high temperatures. Traditionally, sunscald is controlled using physical barriers that reflect radiation, however this practice is not always efficient. A possible alternative would be the use of chemical barriers, such as mycosporine-like amino acids (MAAs), which protect aquatic organisms against ultraviolet (UV) radiation. Thus, this study aimed to develop a lipid-based emulsion containing MAAs for using in the preharvest of horticultural products.

Results: Emulsions were developed using 10% (w/v) of corn oil (CO) and soybean oil (SO), carnauba wax (CW), and beeswax (BW) as lipid bases (LBs). The emulsion containing CW and ammonium hydroxide was the most stable, resembling commercial wax. Therefore, this formulation was used as the basis for the incorporation of the commercial product Helioguard™ 365, a source of MAA, in concentrations of 0%, 1%, 2%, and 4% (v/v). The MAA incorporation resulted in little modifications in the stability of the emulsion, providing an increase in the absorbance with peaks in the UV-B ranging from 280 to 300 nm.

Conclusion: The lipid-base emulsion containing MAAs could be used as a chemical barrier to control sunscald in horticultural products. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11415DOI Listing

Publication Analysis

Top Keywords

mycosporine-like amino
8
chemical barriers
8
control sunscald
8
horticultural products
8
emulsion maas
8
production mycosporine-like
4
amino acid
4
acid maa-loaded
4
maa-loaded emulsions
4
chemical
4

Similar Publications

Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days.

View Article and Find Full Text PDF

Proteomic insight into growth and defense strategies under low ultraviolet-B acclimation in the cyanobacterium Nostoc sphaeroides.

J Photochem Photobiol B

January 2025

Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of life sciences, Hubei Normal University, Huangshi 435002, Hubei, China. Electronic address:

Prioritizing defense over growth often occurs under ultraviolet (UV)-B radiation while several studies showed its growth-promoting effects on photosynthetic organisms, how they overcome the growth-defense trade-off is unclear. This study deciphered the acclimation responses of the cyanobacterium Nostoc sphaeroides to low UV-B radiation (0.08 W m) using quantitative proteomic, physiological and biochemical analyses.

View Article and Find Full Text PDF

Mycosporine-like amino acids are water-soluble secondary metabolites that protect photosynthetic microorganisms from ultraviolet radiation. Here, we present direct evidence for the production of these compounds in surface scums of cyanobacteria along the Baltic Sea coast. We collected 59 environmental samples from the southern coast of Finland during the summers of 2021 and 2022 and analysed them using high-resolution liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Recently, many studies have revealed the association between environmental stresses and skin disorders. Skin protects the inner body organs as a first line of defence against various environmental detriments. The physical, chemical, biological, and environmental stresses and internal factors, including reactive oxygen species, can lead to skin aging, laxity, wrinkles, dryness, and coarse texture.

View Article and Find Full Text PDF

Novel synthetic UV screen compounds inspired in mycosporine-like amino acids (MAAs): Antioxidant capacity, photoprotective properties and toxicity.

J Photochem Photobiol B

December 2024

Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios, 53, 26006 Logroño, La Rioja, Spain.

The combination of environmental stress on the ozone layer, climate change and a greater sun exposure due to outdoor habits has led to an increase in skin cancer cases and other health issues related with UV radiation. Researchers are searching for new alternative UV filters that could protect our skin from the deleterious effects of UV radiation while also presenting low toxicity and biodegradable character (unlike the UV filters currently available in the market). In this work, two compounds inspired in the natural oxo-mycosporine-like amino acids (MAAs) have been synthesized and their antioxidant and photoprotective properties, as well as their in vitro and in vivo toxicity effects were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!