Native Escherichia coli polynucleotide phosphorylase can be retained on blue-dextran--Sepharose. The bound enzyme cannot be displaced by its mononucleotide substrates such as ADP, UDP, CDP, GDP and IDP, but it is easily eluted by its polymeric substrates. Under identical conditions, lactate dehydrogenase, bound on blue-dextran--Sepharose, is not eluted by poly(I) but can be specifically displaced by NADH. On the other hand, the trypsinized polynucleotide phosphorylase, known to be an active enzyme which has lost its polynucleotide site, does not bind to the affinity column. The native polynucleotide phosphorylase can also be tightly bound to poly(U)--agarose and displaced from it only by high salt concentration. The trypsinized enzyme is not bound at all on poly(I)--AGAROSe. Moreover, the native enzyme linked on blue-dextran--Sepharose, remains active indicating a free access of nucleoside diphosphates to the active center. These results taken together show that the dye ligand is not inserted onto the mononucleotide binding site and suggest rather that it binds to the polynucleotide binding region. The implications of this study and the application of blue-dextran--Sepharose affinity chromatography to other proteins having affinity for nucleic acids are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1978.tb12030.x | DOI Listing |
mBio
January 2025
TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
Pathol Res Pract
December 2024
Grupo de Medicina Molecular y Mitocondrial, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, C/Quevedo 2, Valencia 46001, Spain.
Liver cancer, particularly hepatocellular carcinoma (HCC), is a major global health challenge, largely associated with cirrhosis caused by various factors. Prognosis is often guided by molecular and histological classifications. In this study, expression of Polyribonucleotide Phosphorylase (PNPT1) in HCC was investigated to better understand its role in tumor behavior and patient outcomes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Cell Commun Signal
September 2024
IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia.
Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation.
View Article and Find Full Text PDFMol Metab
November 2024
General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China. Electronic address:
Objective: Metabolic-associated fatty liver disease (MAFLD) represents one of the most prevalent chronic liver conditions worldwide, but its precise pathogenesis remains unclear. This research endeavors to elucidate the involvement and molecular mechanisms of polyribonucleotide nucleotidyltransferase 1 (PNPT1) in the progression of MAFLD.
Methods: The study employed western blot and qRT-PCR to evaluate PNPT1 levels in liver specimens from individuals diagnosed with MAFLD and in mouse models subjected to a high-fat diet.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!