: The lack of standardization in quantitative radiomic measures of tumors seen on computed tomography (CT) scans is generally recognized as an unresolved issue. To develop reliable clinical applications, radiomics must be robust across different CT scan modes, protocols, software, and systems. We demonstrate how custom-designed phantoms, imprinted with human-derived patterns, can provide a straightforward approach to validating longitudinally stable radiomic signature values in a clinical setting. : Described herein is a prototype process to design an anatomically informed 3D-printed radiomic phantom. We used a multimaterial, ultra-high-resolution 3D printer with voxel printing capabilities. Multiple tissue regions of interest (ROIs), from four pancreas tumors, one lung tumor, and a liver background, were extracted from digital imaging and communication in medicine (DICOM) CT exam files and were merged together to develop a multipurpose, circular radiomic phantom (18 cm diameter and 4 cm width). The phantom was scanned 30 times using standard clinical CT protocols to test repeatability. Features that have been found to be prognostic for various diseases were then investigated for their repeatability and reproducibility across different CT scan modes. : The structural similarity index between the segment used from the patients' DICOM image and the phantom CT scan was 0.71. The coefficient variation for all assessed radiomic features was across 30 repeat scans of the phantom. The percent deviation (pDV) from the baseline value, which was the mean feature value determined from repeat scans, increased with the application of the lung convolution kernel, changes to the voxel size, and increases in the image noise. Gray level co-occurrence features, contrast, dissimilarity, and entropy were particularly affected by different scan modes, presenting with . : Previously discovered prognostic and popular radiomic features are variable in practice and need to be interpreted with caution or excluded from clinical implementation. Voxel-based 3D printing can reproduce tissue morphology seen on CT exams. We believe that this is a flexible, yet practical, way to design custom phantoms to validate and compare radiomic metrics longitudinally, over time, and across systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240751 | PMC |
http://dx.doi.org/10.1117/1.JMI.8.3.033505 | DOI Listing |
BMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
BMC Cancer
January 2025
Department of Radiology, Xiangtan Central Hospital, Xiangtan, 411000, P. R. China.
Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).
Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.
Sci Rep
January 2025
Department of Computer Engineering, Inha University, Incheon, Republic of Korea.
The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.). Electronic address:
Rationale And Objectives: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).
Methods: 506 patients were retrospectively enrolled from three independent institutes and divided into the training (n=357) and external test (n=149) sets. Ki67 expression was determined by immunohistochemistry (IHC) and categorized into low (<15%) and high (≥15%) expression groups.
Magn Reson Imaging
January 2025
Background: Huai-he Hospital of Henan University, Kaifeng, China. Electronic address:
Objective: To explore the application value of MRI-based imaging histology and deep learning model in the identification and classification of breast phyllodes tumors.
Methods: Seventy-seven patients diagnosed as breast phyllodes tumors and fibroadenomas by pathological examination were retrospectively analyzed, and traditional radiomics features, subregion radiomics features, and deep learning features were extracted from MRI images, respectively. The features were screened and modeled using variance selection method, statistical test, random forest importance ranking method, Spearman correlation analysis, least absolute shrinkage and selection operator (LASSO).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!