Understanding the complex interrelationships between wildfire and its environmental and anthropogenic controls is crucial for wildfire modeling and management. Although machine learning (ML) models have yielded significant improvements in wildfire predictions, their limited interpretability has been an obstacle for their use in advancing understanding of wildfires. This study builds an ML model incorporating predictors of local meteorology, land-surface characteristics, and socioeconomic variables to predict monthly burned area at grid cells of 0.25° × 0.25° resolution over the contiguous United States. Besides these predictors, we construct and include predictors representing the large-scale circulation patterns conducive to wildfires, which largely improves the temporal correlations in several regions by 14%-44%. The Shapley additive explanation is introduced to quantify the contributions of the predictors to burned area. Results show a key role of longitude and latitude in delineating fire regimes with different temporal patterns of burned area. The model captures the physical relationship between burned area and vapor pressure deficit, relative humidity (RH), and energy release component (ERC), in agreement with the prior findings. Aggregating the contribution of predictor variables of all the grids by region, analyses show that ERC is the major contributor accounting for 14%-27% to large burned areas in the western US. In contrast, there is no leading factor contributing to large burned areas in the eastern US, although large-scale circulation patterns featuring less active upper-level ridge-trough and low RH two months earlier in winter contribute relatively more to large burned areas in spring in the southeastern US.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243942PMC
http://dx.doi.org/10.1029/2020EF001910DOI Listing

Publication Analysis

Top Keywords

burned area
16
large burned
12
burned areas
12
machine learning
8
large-scale circulation
8
circulation patterns
8
burned
7
identifying key
4
key drivers
4
drivers wildfires
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!