Unlabelled: Waterlogging is a severe abiotic stressor that inhibits crop growth and productivity owing to the decline in the amount of oxygen available to the waterlogged organs. Although melon ( L.) is sensitive to waterlogging, its ability to form adventitious roots facilitates the diffusion of oxygen and allows the plant to survive waterlogging. To provide comprehensive insight into the adventitious rooting in response to waterlogging of melon, global transcriptome changes during this process were investigated. Of the 17,146 genes expressed during waterlogging, 7363 of them were differentially expressed in the pairwise comparisons between different waterlogging treatment time points. A further analysis suggested that the genes involved in sugar cleavage, glycolysis, fermentation, reactive oxygen species scavenging, cell wall modification, cell cycle governing, microtubule remodeling, hormone signals and transcription factors could play crucial roles in the adventitious root production induced by waterlogging. Additionally, ethylene and ERFs were found to be vital factors that function in melon during adventitious rooting. This study broadens our understanding of the mechanisms that underlie adventitious rooting induced by waterlogging and lays the theoretical foundation for further molecular breeding of waterlogging-tolerant melon.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-02866-w.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217412PMC
http://dx.doi.org/10.1007/s13205-021-02866-wDOI Listing

Publication Analysis

Top Keywords

adventitious rooting
16
waterlogging
9
waterlogging melon
8
induced waterlogging
8
adventitious
6
depicting molecular
4
molecular responses
4
responses adventitious
4
rooting
4
rooting waterlogging
4

Similar Publications

OsCYP22 Interacts With OsCSN5 to Affect Rice Root Growth and Auxin Signalling.

Plant Cell Environ

January 2025

Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, China.

Beyond structural support, plant root systems play crucial roles in the absorption of water and nutrients, fertiliser efficiency and crop yield. However, the molecular mechanism regulating root architecture in rice remains largely unknown. In this study, a short-root rice mutant was identified and named Oscyp22.

View Article and Find Full Text PDF

Optimizing In Vitro Propagation of Schönland Using Leaf, Root, and Inflorescence.

Plants (Basel)

January 2025

Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.

, a species native to South Africa, is characterized by its limited growth and scarcity, contributing to high production costs. Countries like China and Turkey are known for exporting globally. Tissue culture offers an efficient method for mass-producing unique and beautiful species such as This study tested Murashige and Skoog (MS) basal media supplemented with various concentrations of IBA (0.

View Article and Find Full Text PDF

Spatial-Temporal Dynamics of Adventitious Roots of Pers. Seedlings Grown with Auxin/Cytokinin.

Life (Basel)

January 2025

Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, Ciudad de México C.P. 07360, Mexico.

The spatial-temporal dynamics of an in vitro radicular system of for the development of rhizofiltration technologies, with the potential for use as a phytotreatment of eutrophicated water, were studied for the first time in the roots of seedlings and in rhizotron systems. The effect of indole-3-acetic acid (AIA) in combination with kinetin (CIN) or 6-benzylaminopurine (BAP) on seedlings cultivated in the light and dark in three radicular systems and in a rhizotrophic regime for the screening of dynamic rhizogenic lines, by weekly allometric measurements of the length and number of roots, were studied. Inhibition of the elongation and branching velocities of roots by BAP and light was observed but CIN increased elongation and branching.

View Article and Find Full Text PDF

From Taxus to paclitaxel: Opportunities and challenges for urban agriculture to promote human health.

Plant Physiol Biochem

January 2025

Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450052, China. Electronic address:

Conifers of the genus Taxus are environmentally friendly plants with significant medicinal and ecological value, contributing to the enhancement of urban living environments. Paclitaxel, a compound found in Taxus, has garnered particular research interest owing to its potent anti-cancer effects. However, traditional methods of extracting paclitaxel from Taxus are not only inefficient, but also destructive and unsustainable, posing the major risk of Taxus extinction.

View Article and Find Full Text PDF

Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!