The suppressor of the cytokine signaling (SOCS) family of proteins play an essential role in inhibiting cytokine receptor signaling by regulating immune signal pathways. Although SOCS gene functions have been examined extensively, no comprehensive study has been performed on this gene family's molecular evolution in reptiles. In this study, we identified eight canonical SOCS genes using recently-published reptilian genomes. We used phylogenetic analysis to determine that the SOCS genes had highly conserved evolutionary dynamics that we classified into two types. We identified positive selection signals in whole reptile lineages and selection signals in the crocodilian lineage. Selective pressure analyses using the branch model and Z-test revealed that these genes were under different negative selection pressures compared to reptile lineages. We also concluded that the nature of selection pressure varies across different reptile lineages on , and the crocodilian lineage has experienced rapid evolution. Our results may provide a theoretical foundation for further analyses of reptilian SOCS genes' functional and molecular mechanisms, as well as their roles in reptile growth and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236234 | PMC |
http://dx.doi.org/10.7717/peerj.11677 | DOI Listing |
Gene
January 2025
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:
Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.
View Article and Find Full Text PDFPathogens
December 2024
School of Agriculture Science, Murdoch University, Murdoch, WA 6150, Australia.
Malaria and other haemosporidian parasites are common in reptiles. During baseline health surveys of sea turtles in Western Australia (WA), haemosporidian parasites were detected in flatback () and green () turtle erythrocytes during routine blood film examination. 130 blood samples were screened via polymerase chain reaction (PCR), including 105 20 and 5 olive ridley turtles ().
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
Adaptive radiations are characterized by an increase in species and/or phenotypic diversity as organisms fill open ecological niches. Often, the putative adaptive radiation has been studied without explicit comparison to the patterns and rates of evolution of closely related clades, leaving open the question whether notable changes in evolutionary process indeed occurred at the origin of the group. Anolis lizards are an oft-used model for investigating the tempo and mode of adaptive radiations.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratório de Genética e Evolução Molecular, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
A recent study proposed a new genetic lineage of leatherback turtles (Dermochelys coriacea) based on genetic analysis, environmental history, and local ecological knowledge (LEK), suggesting the existence of two possible species or subspecies on the beaches of Oaxaca, diverging ~ 13.5 Mya. However, this hypothesis may be influenced by nuclear mitochondrial DNA segments (NUMTs), which could have been misamplified as true mtDNA.
View Article and Find Full Text PDFJ Morphol
January 2025
Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany.
Booidean snakes are a diverse and widespread lineage with an intriguing evolutionary and biogeographic history. By means of cranial morphology and osteology, this study investigates the evolutionary convergence in the Neotropical genera Boa and Corallus on the one hand and the Malagasy clade comprising Acrantophis and Sanzinia on the other. We hypothesize that the mostly arboreal Corallus and Sanzinia present larger jaws and longer teeth to keep hold of the prey and resist gravity and torsional forces acting on their skull while hanging from branches, while terrestrial genera such as Acrantophis show thinner jaws with shorter teeth because they can rely on the full length of their coils to immobilize and constrict the prey together with a substrate that supports the whole of their body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!