We describe a multimodal microscope for visualizing processive enzymes moving on immobilized substrates. The instrument combines interference reflection microscopy (IRM) with multi-wavelength total internal reflectance fluorescence microscopy (TIRFM). The microscope can localize quantum dots with a precision of 2.8 nm at 100 frames/s, and was used to image the dynamics of the cellulase, Cel7a interacting with surface-immobilized cellulose. The instrument, which was built with off-the-shelf components and is controlled by custom software, is suitable for tracking other degradative enzymes such as collagenases, as well as motor proteins moving along immobilized tracks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221963 | PMC |
http://dx.doi.org/10.1364/BOE.423798 | DOI Listing |
Nat Commun
January 2025
Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad, 2001, Chamilpa, Cuernavaca, Mor., Mexico. Electronic address:
Glucansucrase Dsr_Wcp3a from a Weissella confusa strain discovered in fermented maize (pozol) was produced in E. coli BL21 resulting in three truncated forms of the native enzyme. An important modification of specificity is observed, as the truncated enzymes synthesize low molecular weight dextran from sucrose, probably due to the absence of domains IV and V, compared to the native enzyme which produces high molecular weight dextran.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany. Electronic address:
Human chitinolytic enzymes trigger growing interest, not only because a wide range of diseases and allergic responses are linked to chitinous components of pathogens, including their interplay with human enzymes, but also due to the increasing use of chitosans in biomedical applications. Here, we present a detailed side-by-side analysis of the only two human chitinases, chitotriosidase and acidic mammalian chitinase, as well as human lysozyme. By analyzing the cleavage of well-characterized chitosan polymers and defined chitin and chitosan oligomers, we report mild processivity and a quantitative subsite preference typical for GH18 chitinases for chitotriosidase and acidic mammalian chitinase.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore.
Enzyme-catalyzed protein modifications have become invaluable in diverse applications, outperforming chemical methods in terms of precision, conjugation efficiency, and biological compatibility. Despite significant advances in ligases, such as sortase A and OaAEP1, their use in heterogeneous biological environments remains constrained by limited target sequence specificity. In 2021, Lupas' group introduced Connectase, a family of repurposed archaeal proteases for protein ligations, but its low processivity and lack of structural information have impeded further engineering for practical biological and biophysical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!