Background: Hematology analysis comprises some of the highest volume tests run in clinical laboratories. Autoverification of hematology results using computer-based rules reduces turnaround time for many specimens, while strategically targeting specimen review by technologist or pathologist.

Methods: Autoverification rules had been developed over a decade at an 800-bed tertiary/quarternary care academic medical central laboratory serving both adult and pediatric populations. In the process of migrating to newer hematology instruments, we analyzed the rates of the autoverification rules/flags most commonly associated with triggering manual review. We were particularly interested in rules that on their own often led to manual review in the absence of other flags. Prior to the study, autoverification rates were 87.8% (out of 16,073 orders) for complete blood count (CBC) if ordered as a panel and 85.8% (out of 1,940 orders) for CBC components ordered individually (not as the panel).

Results: Detailed analysis of rules/flags that frequently triggered indicated that the immature granulocyte (IG) flag (an instrument parameter) and rules that reflexed platelet by impedance method (PLT-I) to platelet by fluorescent method (PLT-F) represented the two biggest opportunities to increase autoverification. The IG flag threshold had previously been validated at 2%, a setting that resulted in this flag alone preventing autoverification in 6.0% of all samples. The IG flag threshold was raised to 5% after detailed chart review; this was also the instrument vendor's default recommendation for the newer hematology analyzers. Analysis also supported switching to PLT-F for all platelet analysis. Autoverification rates increased to 93.5% (out of 91,692 orders) for CBC as a panel and 89.8% (out of 11,982 orders) for individual components after changes in rules and laboratory practice.

Conclusions: Detailed analysis of autoverification of hematology testing at an academic medical center clinical laboratory that had been using a set of autoverification rules for over a decade revealed opportunities to optimize the parameters. The data analysis was challenging and time-consuming, highlighting opportunities for improvement in software tools that allow for more rapid and routine evaluation of autoverification parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240550PMC
http://dx.doi.org/10.4103/jpi.jpi_89_20DOI Listing

Publication Analysis

Top Keywords

autoverification
11
autoverification hematology
8
autoverification rules
8
academic medical
8
newer hematology
8
manual review
8
autoverification rates
8
orders cbc
8
detailed analysis
8
flag threshold
8

Similar Publications

Background: Our institution involves our pathology residents in departmental quality initiatives and in identifying needs for operational improvements. The solutions achieved by these projects have effects beyond the laboratory, and ultimately help to improve diagnostic stewardship by supporting the clinician's ability to obtain necessary biochemical information at the right time. A project highlighting a successful venture is described here in which our investment in new total laboratory automation was not meeting our goals for autoverification rates, resulting in less than expected improvements to turnaround times (TAT).

View Article and Find Full Text PDF

Objectives: Autoverification increases the efficiency of laboratories. Laboratories accredited according to ISO 15189:2022 need to validate their processes, including autoverification, and assess the associated risks to patient safety. The aim of this study was to propose a systematic verification algorithm for autoverification and to assess its potential risks.

View Article and Find Full Text PDF

Objectives: Preanalytical phase is an elemental part of laboratory diagnostics, but is prone to humane errors. The aim of this study was to evaluate performance in preanalytical phase external quality assessment (EQA) cases. We also suggest preventive actions for risk mitigation.

View Article and Find Full Text PDF

Establishment and application of autoverification system for HbA1c testing.

Biochem Med (Zagreb)

October 2024

Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academic Medical Science and Peking Union Medical College, Beijing, China.

Introduction: This study aimed to determine autoverification rules for routine glycated hemoglobin (HbA1c) analysis based on high-performance liquid chromatography (HPLC) principle. Laboratory information system (LIS) and Bio-Rad D-100 Advisor software (Bio-Rad, Hercules, USA) with graphics recognition function were carriers for the autoverification system.

Materials And Methods: A total of 105,126 HbA1c results, including 98,249 HbA1c matching fast plasma glucose (FPG) results of real-world data from May 2019 to June 2020, were collected to determine autoverification rules including flags, delta checks, reporting limits, and logical rules.

View Article and Find Full Text PDF

Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!