The inevitable microstructural defects, including cracks, grain boundaries and cavities, make a portion of the material inaccessible to electrons and ions, becoming the incentives for electrochemically inactive zones in single entity. Herein, we introduced dark field microscopy to study the variation of scattering spectrum and optical mass centroid (OMC) of single Prussian blue nanoparticles during electrochemical reaction. The "dark zone" embedded in a single electroactive nanoparticle resulted in the incomplete reaction, and consequently led to the misalignment of OMC for different electrochemical intermediate states. We further revealed the dark zones such as lattice defects in the same entity, which were externally manifested as the fixed pathway for OMC for the migration of potassium ions. This method opens up enormous potentiality to optically access the heterogeneous intraparticle dark zones, with implications for evaluating the crystallinity and electrochemical recyclability of single electroactive nano-objects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221172 | PMC |
http://dx.doi.org/10.1039/d1sc01623g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!