We present a set of idealized numerical experiments of a solstitial aquaplanet ocean and examine the thermodynamic and dynamic implications of surface gravity waves (SGWs) upon its mean state. The aquaplanet's oceanic circulation is dominated by an equatorial zonal jet and four Ekman driven meridional overturning circulation (MOC) cells aligned with the westerly atmospheric jet streams and easterly trade winds in both hemispheres. Including SGW parameterization (representing modulations of air-sea momentum fluxes, Langmuir circulation, and Stokes-Coriolis force) increases mixed layer vertical momentum diffusivity by ∼40% and dampens surface momentum fluxes by ∼4%. The correspondingly dampened MOC impacts the oceanic density structure to 1 km depth by lessening the large-scale advective transports of heat and salt, freshening the equatorial latitudes (where evaporation minus precipitation [E - P] is negative) and increasing salinity in the subtropics (where E - P is positive) by 1%. The midlatitude pycnocline in both hemispheres is deepened by the inclusion of SGWs. Including SGWs into the aquaplanet ocean model acts to increase mixed layer depth by ∼10% (up to 20% in the wintertime in midlatitudes), decrease vertical shear in the upper 200 m and alter local midlatitude buoyancy frequency. Generally, the impacts of SGWs upon the aquaplanet ocean are found to be consistent across cooler and warmer climates. We suggest that the implications of these simulations could be relevant to understanding future projections of SGW climate, exoplanetary oceans, and the dynamics of the Southern Ocean mixed layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244083PMC
http://dx.doi.org/10.1029/2020MS002202DOI Listing

Publication Analysis

Top Keywords

aquaplanet ocean
16
mixed layer
12
surface gravity
8
gravity waves
8
momentum fluxes
8
sgws aquaplanet
8
ocean
5
role surface
4
aquaplanet
4
waves aquaplanet
4

Similar Publications

Clouds are a key player in the global climate system, affecting the atmospheric water and energy budgets, and they are strongly coupled to the large-scale atmospheric circulation. Here, we examine the co-variability of the atmospheric energy and water budget imbalances in three different global model configurations-radiative-convective equilibrium, aqua-planet, and global simulations with land. The gradual increase in the level of complexity of the model configuration enables an investigation of the effects of rotation, meridional temperature gradient, land-sea contrast, and seasonal cycle on the co-variability of the water and energy imbalances.

View Article and Find Full Text PDF

The high computational cost of Global Climate Models (GCMs) is a problem that limits their use in many areas. Recently an inverse climate modeling (InvCM) method, which fixes the global mean sea surface temperature (SST) and evolves the mixing ratio to equilibrate climate, has been implemented in a cloud-resolving model. In this article, we apply InvCM to ExoCAM GCM aquaplanet simulations, allowing the SST pattern to evolve while maintaining a fixed global-mean SST.

View Article and Find Full Text PDF

We present a set of idealized numerical experiments of a solstitial aquaplanet ocean and examine the thermodynamic and dynamic implications of surface gravity waves (SGWs) upon its mean state. The aquaplanet's oceanic circulation is dominated by an equatorial zonal jet and four Ekman driven meridional overturning circulation (MOC) cells aligned with the westerly atmospheric jet streams and easterly trade winds in both hemispheres. Including SGW parameterization (representing modulations of air-sea momentum fluxes, Langmuir circulation, and Stokes-Coriolis force) increases mixed layer vertical momentum diffusivity by ∼40% and dampens surface momentum fluxes by ∼4%.

View Article and Find Full Text PDF

Precipitation plays a crucial role in the Earth's energy balance, the water cycle, and the global atmospheric circulation. Aerosols, by direct interaction with radiation and by serving as cloud condensation nuclei, may affect clouds and rain formation. This effect can be examined in terms of energetic constraints, that is, any aerosol-driven diabatic heating/cooling of the atmosphere will have to be balanced by changes in precipitation, radiative fluxes, or divergence of dry static energy.

View Article and Find Full Text PDF

This study aims to understand the nature of the tropical intraseasonal oscillations (ISOs) in an aquaplanet simulation performed using Geophysical Fluid Dynamics Laboratory's AM2.1 with a uniform sea surface temperature within the deep tropics. The simulated ISO resembles the observed Madden-Julian Oscillation in that the spectral peak in precipitation appears at zonal wave number 1 and a period of ~60 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!