SARS-CoV-2 and Plasma Hypercoagulability.

Cell Mol Bioeng

Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, Stony Brook, NY 11794 USA.

Published: October 2021

Hypercoagulability has emerged as a prominent consequence of COVID-19. This presents challenges not only in the clinic, but also in thrombosis research. Health and safety considerations, the status of the blood and plasma supply, the infection status of individual donors, and the mechanisms by which SARS-CoV-2 activates coagulation are all of concern. In this review, we discuss these topics from the basic research perspective. As in other respiratory illnesses, blood and plasma from COVID-19 positive patients carries minimal to no risk of infection to practitioners or researchers. There are currently no special regulatory mandates directing individual donors (for research purposes), blood centers/services or vendors (for blood products for research) to test blood/plasma for SARS-CoV-2 or antibodies. We discuss current theories about how SARS-CoV-2 leads to hyper-coagulant state in severe cases of COVID-19. Our current understanding of the mechanisms behind COVID-19 associated thromboembolic events have centered around three different pathways: (1) direct activation of platelets, enhancing coagulation; (2) direct infection and indirect activation (e.g. cytokine storm) of endothelial cells by SARS-CoV-2, shifting endothelium from an anti-thrombotic to a pro-thrombotic state; and (3) direct activation of complement pathways, promoting thrombin generation. Further investigation on how SARS-CoV-2 affects thrombosis in COVID-19 patients may bring novel anti-thrombotic therapies to combat the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238024PMC
http://dx.doi.org/10.1007/s12195-021-00685-wDOI Listing

Publication Analysis

Top Keywords

blood plasma
8
individual donors
8
direct activation
8
sars-cov-2
6
covid-19
5
sars-cov-2 plasma
4
plasma hypercoagulability
4
hypercoagulability hypercoagulability
4
hypercoagulability emerged
4
emerged prominent
4

Similar Publications

Introduction: Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt.

Methods: Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022.

View Article and Find Full Text PDF

Ehrlichia sp. in dairy cattle from Bahia, Brazil: high seropositivity rates and molecular confirmation of Ehrlichia minasensis.

BMC Vet Res

December 2024

Departamento de Anatomia, Patologia e Clínicas Veterinárias, Universidade Federal da Bahia, Escola de Medicina Veterinária e Zootecnia, Av. Milton Santos 500, Salvador, Bahia, CEP 40170-110, Brazil.

Background: Ehrlichia spp. are obligate intracytoplasmic Gram-negative tickborne bacteria from the Anaplasmataceae family. Ehrlichiosis is considered an emerging disease in humans and animals.

View Article and Find Full Text PDF

Objectives: This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.

Methods: Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50).

View Article and Find Full Text PDF

The ruthenium compounds have been known to have the wide range of potential applications as anticancer, antibacterial and anti-diabetic etc. The ligand substitutions play a vital role in enhancing the pharmacological and biological activities. In the present study, three ruthenium-metal based complexes, designated as (I-III), were synthesized and characterized employing element analysis, FTIR and HNMR.

View Article and Find Full Text PDF

A new aguanidine-based bis Schiff base for highly selective Al recognition, BSA binding studies and theoretical calculations.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:

Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!