() biofilm plays an important role in the persistence of chronic infection due to its resistance to antibiotics. Because of their functional diversity, active polysaccharide is increasingly being applied as a biocontrol agent to inhibit the formation of biofilm by pathogens. In this study, a new polysaccharide, GBSPII-1, isolated from the fresh sarcotesta of . () was characterized and its effect on antibiofilm formation of was examined . High-Performance Liquid Chromatography (HPLC) analysis showed that GBSPII-1 is an acidic heteropolysaccharide composed of mannose, rhamnose, glucose, glucuronic acid, and galacturonic acid. GBSPII-1 demonstrated a molecular weight of 34 kDa and may affect the accumulation of polysaccharide intercellular adhesion (PIA) by inhibiting A, B, C, and D gene expression at subinhibitory concentrations. Under 10 g/L, GBSPII-1 showed an antioxidant effect on the inhibition rate of HO-induced erythrocyte hemolysis and the scavenging rate of DPPH radicals was 76.5 ± 0.5% and 89.2 ± 0.26%, respectively. The findings obtained in this study indicate that GBSPII-1 has antibacterial effect, is a possible source of natural antioxidants, and may be a potential biocontrol agent for the design of new therapeutic strategies for biofilm-related infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221852 | PMC |
http://dx.doi.org/10.1155/2021/5518403 | DOI Listing |
Sci Rep
January 2025
Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
Endophytic fungi live in healthy plant tissues and organs and are a major source of natural bioactive compounds. In this study, we found that an endophytic fungus, CEF642, isolated from the healthy cotton roots, suppressed by up to 53% after 15 days in a confrontation culture. Genome sequencing of CEF642 and mass spectrometry study of its metabolites were used to identify its primary antagonists.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively.
View Article and Find Full Text PDFFungal Biol
February 2025
Fungal Stress Laboratory, Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, PR, 85660-000, Brazil. Electronic address:
Insect fungal pathogens such as Beauveria bassiana, Metarhizium robertsii, and Tolypocladium inflatum have been used as insect biocontrol agents. Their infection mechanism involves non-specific adhesion to the host cuticle, which is controlled by hydrophobins, small proteins that form an amphipathic monolayer with rodlet morphology on diverse fungal structures. Light is an abiotic factor that may influence a wide range of cellular processes, including conidiogenesis, stress tolerance, and metabolite biosynthesis.
View Article and Find Full Text PDFJ Econ Entomol
January 2025
Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA.
The invasive emerald ash borer (Agrilus planipennis Fairmaire) (EAB) has been devastating North American ash (Fraxinus spp.) resources for over 2 decades. In its native range, EAB attacks and kills primarily stressed ash trees.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!