Medicinal plants have long been studied due to their anticancer effects and use of them is commonly increased as a complementary and alternative medicine (CAM therapies) among patients with cancer. In this study, (A.m) and (A.h) extracts were evaluated for their effects on inhibiting the growth of 4T1 breast cancer cells. Based on MTT assay results, the IC50s of A.m and A.h extracts were 57 g/ml and 85 g/ml, respectively. Then the cell migration, gene expression, and degree of apoptosis after 48 hours in each treated group with A.m and A.h extracts alone or in combination with docetaxel (DTX) on 4T1 cells were evaluated. A.m had a synergistic behavior with DTX (CI < 1). A.h reduced DTX IC50 but presented CI > 1. Cell migration assay showed that each extract alone or in combination with DTX prevented the migration of 4T1 cells. The Ao/EB staining and flowcytometry results confirmed that, in combination therapy, A.m + DTX and A.h + DTX induced apoptosis close to the level of DTX. Real-time PCR analysis showed that A.m + DTX (IC50 + IC25) downregulated the mRNA expression of HIF-1 and FZD7. A.m + DTX (IC50 + IC10) group decreased the expression of HIF-1. Moreover, in A.h + DTX (IC50 + IC25) group, -Catenin and FZD7 were downregulated and upregulated, respectively. Generally, our findings suggest that the combination of A.m and DTX possesses synergistic antitumor effects on 4T1 cells, which may be a valuable choice for CAM therapies. A.h has an acceptable antitumor activity but not in combination with DTX.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8219415PMC
http://dx.doi.org/10.1155/2021/5517944DOI Listing

Publication Analysis

Top Keywords

4t1 cells
12
combination dtx
12
anticancer effects
8
extracts combination
8
combination docetaxel
8
4t1 breast
8
breast cancer
8
cancer cells
8
cam therapies
8
cell migration
8

Similar Publications

Terbium-Labeled Gold Nanoparticles as Nanoscale Brachytherapy Agents Against Breast Cancer.

Materials (Basel)

January 2025

Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou and 27 Neapoleos Street, 15341 Athens, Greece.

Due to their intriguing emission profile, Terbium-161 (Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we propose the application of a hybrid nanosystem comprising gold decorated (Au@TADOTAGA) iron oxide nanoflowers as a form of injectable nanobrachytherapy for the local treatment of breast cancer.

View Article and Find Full Text PDF

The autotaxin-lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy.

View Article and Find Full Text PDF

: The stimulator of interferon genes (STING) is currently accepted as a relevant target for anti-cancer therapies. Besides encouraging results showing STING agonist-induced tumor growth inhibition, in some types of tumors the effect is less prominent. We hypothesized that higher STING levels in cancer cells and the possibility of its activation determine a greater anti-cancer response.

View Article and Find Full Text PDF

Energy delivered at different wavelengths causes different types of damage to DNA. PC-3, FaDu, 4T1 and B16-F10 cells were irradiated with different wavelengths of ultraviolet light (UVA/UVC) and ionizing radiation (X-ray). Furthermore, different photosensitizers (ortho-iodo-Hoechst33258/psoralen/trioxsalen) were tested for their amplifying effect.

View Article and Find Full Text PDF

Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of HO catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!