Background: Chuankezhi injection (CKZI) was an effective traditional Chinese medicine (TCM) injection in adjuvant bronchial asthma therapy. In this report, we used a network pharmacology method to reveal the mechanisms of CKZI for the treatment of asthma.
Methods: The candidate compounds in CKZI were determined by searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and China National Knowledge Infrastructure website (CNKI). The targets of candidate compounds were searched in the TCMSP, DrugBank 5.0, and SwissTargetPrediction. The disease targets were screened from the Online Mendelian Inheritance in Man (OMIM) and GeneCards. The overlapping gene symbols between candidate compounds and disease were filtered via a Venn diagram and were considered as potential targets. A protein-protein interaction (PPI) network and disease-related candidate compound-target-pathway (DC-T-P) network were visualized by Cytoscape 3.6.1. Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed by metascape to determine the pathways related to asthma.
Results: A total of 70 overlapping gene symbols were recognized as potential targets. Cytokines (IL6, TNF, and IL1B) and chemokines (CXCL8 and CCL2) could be recognized as hub genes. Asthma-related candidate compounds were mainly flavonoids, such as quercetin, luteolin, and kaempferol. The cytokine-mediated signaling pathway, cytokine receptor binding, and membrane craft were the most significant biological process (BP), molecular function (MF), and cellular component (CC) of GO function results, respectively. The relevant pathways of CKZI against asthma mainly include IL-17, NF-kappa B, HIF-1, calcium, and PI3K-Akt signaling pathways.
Conclusion: Our research provided a theoretical basis for further investigating the mechanisms of CKZI in the treatment of asthma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213469 | PMC |
http://dx.doi.org/10.1155/2021/5517041 | DOI Listing |
Cell Death Discov
January 2025
The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
Lin28 is a key regulator of cancer stem cell gene network that promotes therapy-resistant tumor progression in various tumors. However, no Lin28 inhibitor has been approved to treat cancer patients, urging exploration of novel compounds as candidates to be tested for clinical trials. In this contribution, we applied computer-aided drug design (CADD) in combination with quantitative biochemical and biological assays.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:
Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea. Electronic address:
Andrographis paniculata (AGPA) is known for its wide-ranging biological activities, including antiviral, antipyretic, and anticancer properties. However, its effects on muscle atrophy have not been well understood. This study investigates the impact of andrographolide (AD) and dehydroandrographolide succinate (DAS), key components of AGPA, on skeletal muscle atrophy using in vitro and in vivo models.
View Article and Find Full Text PDFExp Parasitol
January 2025
Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil. Electronic address:
Schistosomiasis stands as one of the most significant parasitic diseases on a global scale, with approximately 250 million infections worldwide. It is imperative to address this pressing issue by developing new antischistosomal drugs. Chalcones have emerged as a promising class of natural compounds, demonstrating noteworthy effects observed in in vitro experiments with Schistosoma mansoni, and demonstrating the ability to inhibit SmNTPDases and apyrase from potatoes.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:
Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.
Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!