Carbon metabolism in higher plants is a basic physiological metabolism, and carbon allocation and conversion require the activity of various enzymes in metabolic processes that alter the content and overall composition of sugars in the sink organ. However, it is not known how various enzymes affect carbon metabolism when tomato plants are subjected to water stress or treated with potassium. Although the process of carbon metabolism is very complex, we used the carbon conversion rate to compare and analyze the enzyme activities related to sugar metabolism and find out which carbon conversion rate are the most important. Results showed that water stress and potassium increased carbon import flux in the fruit, which was beneficial to carbon accumulation. Water deficit increased the activity of sucrose synthase (SuSy) and starch phosphorylase (SP) and decreased the activity of sucrose phosphate synthase (SPS) and adenosine diphosphate glucose pyrophosphorylase (AGPase) in the source. Water stress increased the activity of acid invertase (AI), SuSy and SP but decreased the activity of AGPase in the sink. Potassium modified the balance of enzymes active in sugar and starch metabolism by increasing the activity of AI, SuSy, SPS and SP and significantly decreasing the activity of AGPase, resulting in increase of hexose. Canonical correlational analysis revealed that the carbon conversion rate was mainly affected by the relative rate of conversion of sucrose to fructose and glucose [] and glucose to starch []. SuSy and AGPase had the greatest effect on enzyme activity in the fruit; respectively regulated () and ().
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245005 | PMC |
http://dx.doi.org/10.3389/fpls.2021.681145 | DOI Listing |
Langmuir
March 2025
School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China.
The construction of heterostructures promotes extending the light adsorption range of graphitic carbon nitride (g-CN) materials, improving the photogenerated charge carrier separation/transfer efficiency for attaining much enhanced performances. Because defective tungsten oxide (WO) materials possess rich composition/morphology and an extended light response in the near-infrared region, WO is a quite popular nanocomponent for modifying g-CN, forming heterostructures that can be used for various photocatalytic applications involving water splitting, CO reduction, NO removal, HO generation, and related chemical to fuel conversion reactions. In this review, important aspects of WO/g-CN heterostructure photocatalysts are reviewed to provide paradigms for composition adjustment, structural design, and photocatalytic applications of these materials.
View Article and Find Full Text PDFRSC Adv
March 2025
CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences 100 Haike Road Shanghai 201210 P. R. China
In this work, we conducted a computational study on single atom doped InO catalysts with 12 transition metals (Fe-Cu, Ru-Ag, Os-Au) through density functional theory (DFT) calculations, by investigating the dissociation of H, and the dissociation and hydrogenation of CO. From the thermodynamic-kinetic scaling relationships such as Brønsted-Evans-Polanyi (BEP) and transition-state scaling (TSS) relations, we establish the descriptors for the energy barriers and improve our understanding of the synergistic catalytic effect of oxygen vacancies and single atoms. We find that the adsorption energy of the H adatom on the perfect surface can serve as an effective descriptor for the dissociation energy barrier of H on this surface, and the formation energy of the oxygen vacancy can serve as an effective descriptor for the energy barrier of CO hydrogenation to HCOO as well as the energy barrier of CO direct dissociation.
View Article and Find Full Text PDFChemSusChem
March 2025
Hanyang University - Seoul Campus: Hanyang University, Chemical Engineering, Wangshimni-ro 222, 04763, Seoul, KOREA, REPUBLIC OF.
Although an electrochemical CO2 reduction reaction (ECO2RR) can provide an ideal route to produce CH4, its selectivity is significantly hindered due to kinetically complex steps. To improve CH4 selectivity, this study focuses on microenvironmental engineering using an additive of ethylene diamine tetraacetate (EDTA) in electrolyte. EDTA interacts with the Cu catalyst, altering its electronic structure and promoting CO2 activation, in addition, it forms additional hydrogen bonding with key intermediates of *CO and *CHO leading to their stabilization.
View Article and Find Full Text PDFMaterials (Basel)
March 2025
Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
In this paper, the natural waste pinecone as a carbon precursor for the generation of satisfactory sulfur host materials in lithium-sulfur batteries was realized by introducing molybdenum carbide nanoparticles into the derived carbon structure. The conductive pinecone-derived carbon doped with N, O reveals an expansive specific surface area, facilitating the accommodation of a higher sulfur load. Moreover, the integration of MoC nanoparticles also significantly enhances its chemical affinity and catalytic capacity for polysulfides (LiPSs) to alleviate the shuttle effect and accelerate sulfur redox conversion.
View Article and Find Full Text PDFMaterials (Basel)
February 2025
College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China.
Carbonyl sulfide (COS) is the most abundant and longest-lasting organic reduced sulfur compound in the atmosphere. Removing it is a critical and challenging aspect in desulfurization technology in order to comply with global restrictions on harmful emissions. Catalytic hydrolysis refers to the process whereby COS reacts with water under the influence of a catalyst to generate carbon dioxide and hydrogen sulfide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!