The COVID-19 pandemic resulted in a significant increase in the workload for the emergency systems and healthcare providers all around the world. The emergency systems are dealing with large number of patients in various stages of deteriorating conditions which require significant medical expertise for accurate and rapid diagnosis and treatment. This issue will become more prominent in places with lack of medical experts and state-of-the-art clinical equipment, especially in developing countries. The machine intelligence aided medical diagnosis systems can provide rapid, dependable, autonomous, and low-cost solutions for medical diagnosis in emergency conditions. In this paper, a privacy-preserving computer-aided diagnosis (CAD) framework, called Decentralized deep Emergency response Intelligence (D-EI), which provides secure machine learning based medical diagnosis on the cloud is proposed. The proposed framework provides a blockchain based decentralized machine learning solution to aid the health providers with medical diagnosis in emergency conditions. The D-EI uses blockchain smart contracts to train the CAD machine learning models using all the data on the medical cloud while preserving the privacy of patients' records. Using the proposed framework, the data of each patient helps to increase the overall accuracy of the CAD model by balancing the diagnosis datasets with minority classes and special cases. As a case study, the D-EI is demonstrated as a solution for COVID-19 diagnosis. The D-EI framework can help in pandemic management by providing rapid and accurate diagnosis in overwhelming medical workload conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236221 | PMC |
http://dx.doi.org/10.1007/s00354-021-00131-5 | DOI Listing |
J Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Cancer Screening, American Cancer Society, Atlanta, GA, United States.
Background: The online nature of decision aids (DAs) and related e-tools supporting women's decision-making regarding breast cancer screening (BCS) through mammography may facilitate broader access, making them a valuable addition to BCS programs.
Objective: This systematic review and meta-analysis aims to evaluate the scientific evidence on the impacts of these e-tools and to provide a comprehensive assessment of the factors associated with their increased utility and efficacy.
Methods: We followed the 2020 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and conducted a search of MEDLINE, PsycINFO, Embase, CINAHL, and Web of Science databases from August 2010 to April 2023.
Hepatology
January 2025
Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.
View Article and Find Full Text PDFBackground Aims: SBP leads to high rates acute kidney injury (AKI) -hepatorenal syndrome and mortality. Population-based studies on contemporary SBP epidemiology are needed to inform care. In a large, national cohort of patients diagnosed with SBP and confirmed by ascitic fluid criteria, we characterized ascitic fluid characteristics, in-hospital and 12-month mortality, AKI, and recurrent SBP.
View Article and Find Full Text PDFJCO Clin Cancer Inform
January 2025
Department of Radiology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi, India.
Purpose: To explore the perceived utility and effect of simplified radiology reports on oncology patients' knowledge and feasibility of large language models (LLMs) to generate such reports.
Materials And Methods: This study was approved by the Institute Ethics Committee. In phase I, five state-of-the-art LLMs (Generative Pre-Trained Transformer-4o [GPT-4o], Google Gemini, Claude Opus, Llama-3.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!