Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper we address the problem of inferring direct influences in social networks from partial samples of a class of opinion dynamics. The interest is motivated by the study of several complex systems arising in social sciences, where a population of agents interacts according to a communication graph. These dynamics over networks often exhibit an oscillatory behavior, given the stochastic effects or the random nature of the local interactions process. Inspired by recent results on estimation of vector autoregressive processes, we propose a method to estimate the social network topology and the strength of the interconnections starting from of the interactions, when the whole sample path cannot be observed due to limitations of the observation process. Besides the design of the method, our main contributions include a rigorous proof of the convergence of the proposed estimators and the evaluation of the performance in terms of complexity and number of sample. Extensive simulations on randomly generated networks show the effectiveness of the proposed technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8245206 | PMC |
http://dx.doi.org/10.1109/tac.2021.3056362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!