The oxidation of oleuropein and 3-hydroxytyrosol by oxidases laccase, tyrosinase, and peroxidase has been studied. The use of a spectrophotometric method and another spectrophotometric chronometric method has made it possible to determine the kinetic parameters V and K for each enzyme. The highest binding affinity was shown by laccase. The antioxidant capacities of these two molecules have been characterized, finding a very similar primary antioxidant capacity between them. Docking studies revealed the optimal binding position, which was the same for the two molecules and was a catalytically active position. PRACTICAL APPLICATIONS: One of the biggest environmental problems in the food industry comes from olive oil mill wastewater with a quantity of approximately 30 million tons per year worldwide. In addition, olive pomace, the solid residue obtained from the olive oil production, is rich in hydroxytyrosol and oleuropein and the action of enzymatic oxidases can give rise to products in their reactions that can lead to polymerization. This polymerization can have beneficial effects because it can increase the antioxidant capacity with potential application on new functional foods or as feed ingredients. Tyrosinase, peroxidase, and laccase are the enzymes degrading these important polyphenols. The application of a spectrophotometric method for laccase and a chronometric method, for tyrosinase and peroxidase, allowed us to obtain the kinetic information of their reactions on hydroxytyrosol and oleuropein. The kinetic information obtained could advance in the understanding of the mechanism of these important industrial enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13803DOI Listing

Publication Analysis

Top Keywords

tyrosinase peroxidase
12
oxidation oleuropein
8
oleuropein 3-hydroxytyrosol
8
spectrophotometric method
8
chronometric method
8
antioxidant capacity
8
olive oil
8
hydroxytyrosol oleuropein
8
laccase
5
enzymatic oxidation
4

Similar Publications

The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums.

View Article and Find Full Text PDF

Integrative Omics and Gene Knockout Analyses Suggest a Possible Gossypol Detoxification Mechanism and Potential Key Regulatory Genes of a Ruminal Strain.

J Agric Food Chem

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Gossypol removal is crucial for the resourceful utilization of cottonseed meals in the food and feed industries. Herein, we investigated the comprehensive detoxification mechanism of a gossypol-tolerant strain of (WK331) newly isolated from the rumen. Biodegradation assays showed that WK331 removes over 80% of free gossypol, of which 50% was biodegraded and 30% was converted into bound gossypol.

View Article and Find Full Text PDF

Background: Charcoal Rot (CR) poses a significant threat to mung bean crops by reducing yield, making the development of resistant varieties crucial for stable production and food security. This study evaluated 19 newly identified mung bean landraces using biochemical traits and SSR markers, revealing genetic variability, CR disease reactions, and traits influencing yield and resistance, which provide valuable insights for breeding CR-resistant, high-yielding varieties.

Methods And Results: Mung bean landraces were evaluated for their response to CR using 4 biochemical parameters, and 10 SSR markers to assess genetic variability and disease resistance.

View Article and Find Full Text PDF

Fresh-cut taro, renowned for its high nutritional value and convenience, is prone to rapid browning post-cutting, which hinders its storage life. This study focused on the effects of L-ascorbic acid (AA) combined with ultrasound (US) treatment (AS) on the storage quality and transcriptome analysis of fresh-cut slices of Yongding June Red Taro. Compared to the control (CK) group, AS treatment effectively reduced the weight loss rate of taro slices, maintained higher hardness, delayed the increase of browning, and inhibited the accumulation of O and HO.

View Article and Find Full Text PDF

Low voltage electrostatic field combined with ice-temperature to improve the quality of litchi during storage.

Food Res Int

November 2024

Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong 510610, China. Electronic address:

Litchi is popular among consumers due to its delicious taste, however, the extremely short shelf life limits its commercial value. Few studies have been conducted to develop new technologies to extend the shelf life of litchi. Therefore, this study applied a novel technique (low voltage electrostatic field, LVEF) combined with ice-temperature (0 °C) treatment on litchi and evaluated its quality characteristics during storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!