Background: Microvascular disease (MVD) describes systemic changes in the small vessels (~100 um diameter) that impair tissue oxygenation and perfusion. MVD is a common but poorly monitored complication of diabetes. Recent studies have demonstrated that MVD: (i) is an independent risk factor for ulceration and amputation and (ii) increases risk of adverse limb outcomes synergistically with PAD. Despite the clinical relevance of MVD, microvascular evaluation is not standard in a vascular assessment.

Methods: We evaluated 299 limbs from 153 patients seen clinically for possible lower extremity PAD. The patients were assessed by ankle brachial index (ABI), toe brachial index (TBI), and spatial frequency domain imaging (SFDI). These measurements were evaluated and compared to patient MVD status, defined by clinical diagnoses of (in ascending order of severity) no diabetes; diabetes; diabetes + neuropathy; diabetes + neuropathy + retinopathy.

Results: SFDI-derived parameters HbT1 and StO2 were significantly different across the MVD groups ( < .001). A logistic regression model based on HbT1 and StO2 differentiated limbs with severe MVD (diabetes+neuropathy+retinopathy) from the larger group of limbs from patients with only diabetes ( = .001, area under the curve = 0.844). Neither ABI nor TBI significantly differentiated these populations.

Conclusions: Standard assessment of PAD using ABI and TBI are inadequate for detecting MVD in at-risk populations. SFDI-defined HbT1 and StO2 are promising tools for evaluating MVD. Prospective studies with wound-based outcomes would be useful to further evaluate the role MVD assessment could play in routine clinical evaluation of patients at risk for lower extremity complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846398PMC
http://dx.doi.org/10.1177/19322968211024666DOI Listing

Publication Analysis

Top Keywords

hbt1 sto2
12
mvd
10
microvascular disease
8
spatial frequency
8
frequency domain
8
domain imaging
8
lower extremity
8
diabetes diabetes
8
diabetes neuropathy
8
abi tbi
8

Similar Publications

Background: Microvascular disease (MVD) describes systemic changes in the small vessels (~100 um diameter) that impair tissue oxygenation and perfusion. MVD is a common but poorly monitored complication of diabetes. Recent studies have demonstrated that MVD: (i) is an independent risk factor for ulceration and amputation and (ii) increases risk of adverse limb outcomes synergistically with PAD.

View Article and Find Full Text PDF

SFDI biomarkers provide a quantitative ulcer risk metric and can be used to predict diabetic foot ulcer onset.

J Diabetes Complications

September 2020

Kaiser Permanente, Southern California Pasadena, CA, United States of America.

Aims: Annually, up to 4% of people with diabetes present with a chronic foot ulcer. Quantitative real-time testing to identify patients at risk for ulceration can guide preventative care. Here, we assess whether a non-invasive optical imaging technique, Spatial Frequency Domain Imaging (SFDI), can identify patients at the highest risk for ulceration and predict ulcer onset.

View Article and Find Full Text PDF

Background: Noninvasive vascular tests are critical for identifying patients who may benefit from surgical revascularization, but current tests have significant limitations in people with diabetes. This study aimed to evaluate the ability of spatial frequency domain imaging (SFDI), an optical imaging method capable of measuring tissue oxygen saturation (StO) and tissue hemoglobin, to assess lower extremity blood supply.

Methods: Ankle-brachial index, toe-brachial index, pedal Doppler waveforms, and SFDI images were prospectively evaluated in 47 consecutive patients with and without diabetes in whom there was concern for peripheral artery disease (PAD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!