Morphological and phenological traits are key determinants of the structure of mutualistic networks. Both traits create forbidden links, but phenological traits can also decouple interaction in time. While such difference likely affects the indirect effects among species and consequently network persistence, it remains overlooked. Here, using a dynamic model, we show that networks structured by phenology favour facilitation over competition within guilds of pollinators and plants, thereby increasing network persistence, while the contrary holds for networks structured by morphology. We further show that such buffering of competition by phenological traits mostly beneficiate to specialists, the most vulnerable species otherwise, which propagate the most positive effects within guilds and promote nestedness. Our results indicate that beyond trophic mismatch, phenological shifts such as those induced by climate change are likely to affect indirect effects within mutualistic assemblages, with consequences for biodiversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518482 | PMC |
http://dx.doi.org/10.1111/ele.13836 | DOI Listing |
Front Plant Sci
January 2025
Aquatic Botany and Microbial Ecology Research Group, Hungarian Research Network (HUN-REN) Balaton Limnological Research Institute, Tihany, Hungary.
Common reed () is a cosmopolitan species, though its dieback is a worldwide phenomenon. In order to assess the evolutionary role of phenotypic plasticity in a successful plant, the values and plasticity of photophysiological traits of were investigated in the Lake Fertő wetlands at 5 sites with different degrees of reed degradation and along a seasonal sequence. On the one hand, along the established ecological degradation gradient, photophysiological traits of changed significantly, affecting plant productivity, although no consistent gradient-type trends were observed.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Horticulture, Agricultural Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46040, Türkiye.
Background: Walnut (Juglans regia L.) breeding programs aim to develop new genotypes that exhibit superior agronomic traits, including high yield, improved nut quality, and favorable phenological traits. One of the primary methods used in these programs is hybridization, which involves controlled crosses between selected parent varieties.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh.
Maize is a cornerstone of global agriculture, essential for food security, livestock feed, and industrial uses. With the increasing demand for maize due to population growth and changing dietary patterns, there is a pressing need to enhance maize production. Hybridization is a strategic approach for developing high-yielding and stress-tolerant maize varieties and evaluating these hybrids in specific environmental conditions is vital for optimizing yield and adaptability.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark.
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!