The interaction of water-soluble and fluorescent [Pd (HEAC) Cl] complex, in which HEAC is 2-((2-((2-hydroxyethyl)amino)ethyl)amino) cyclohexanol, with calf thymus DNA (ct-DNA) has been studied. This study was performed using electronic absorption and fluorescence emission spectroscopies, cyclic voltammetry and circular dichroism analyses, dynamic viscosity measurements, and molecular docking theory. From hypochromic effect observed in ct-DNA absorption spectra, it was found that the Pd(II) complex could form a conjugate with ct-DNA strands through the groove binding mode. The K values obtained from fluorescence measurements clearly assert the Pd(II) complex affinity to ct-DNA. The fluorescence quenching of the DNA-Hoechst compound following the successive additions of the Pd(II) complex to the solution revealed that the Pd(II) complex is located in the ct-DNA grooves, and Hoechst molecules have been released into solution; moreover, the resulting measurements from relative viscosity authenticate the Pd(II) complex binding to the grooves. Negative quantities of thermodynamic parameters imply that the Pd(II) complex binds to ct-DNA mainly by the hydrogen bonds and van der Waals forces; also, the Gibbs-free energy changes show the exothermic and spontaneous formation of the Pd(II) complex-DNA system. The electrochemical behavior of the Pd(II) complex in the attendance of ct-DNA was investigated using the cyclic voltammetry method (CV). Several quasi-reversible redox waves were observed along with increasing the anodic/cathodic peak currents, as well as a shift in anodic/cathodic peak potentials. Circular dichroism (CD) observations suggested that the Pd(II)-DNA interaction could alter ct-DNA conformation. The results of molecular modeling confirmed that groove mechanism is followed by the Pd(II) complex to interact with ct-DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-021-02803-1 | DOI Listing |
J Inorg Biochem
January 2025
Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, India; Centre for Material Chemistry, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641 021, India. Electronic address:
A series of new Pd(II) complexes were synthesized from the reaction of andrographolide appended hydrazide derivatives with potassium tetrachloropalladate K[PdCl]. The formation of the complexes was confirmed through structural assessments conducted using various spectroscopic techniques. From the spectral studies we confirmed that the ligands coordinated to Pd(II) ion via amine nitrogen and enone oxygen.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:
Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.
View Article and Find Full Text PDFACS Catal
January 2025
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg, 1, 8093 Zurich, Switzerland.
Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
C-H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C-H activation reactions directed by native functional groups is essential for their broad application in synthesis.
View Article and Find Full Text PDFDalton Trans
January 2025
Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR 6302 CNRS, Université de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
Water-soluble porphyrins have garnered significant attention due to their broad range of applications in biomedicine, catalysis, and material chemistry. In this work, water-soluble platinum(II) and palladium(II) complexes with porphyrins bearing ethyl phosphonate substituents, namely, Pt/Pd 10-(ethoxyhydroxyphosphoryl)-5,15-di(-carboxyphenyl)porphyrins (M3m, M = Pt(II), Pd(II)) and Pt/Pd 5,10-bis(ethoxyhydroxyphosphoryl)-10,20-diarylporphyrins (M1d-M3d; aryl = -tolyl (1), mesityl (2), -carboxyphenyl (3)), were synthesized by alkaline hydrolysis of the corresponding diethyl phosphonates M6m and M4d-M6d. NMR, UV-vis, and fluorescence spectroscopy revealed that the mono-phosphonates M3m tend to form aggregates in aqueous media, while the bis-phosphonates M3d exist predominantly as monomeric species across a wide range of concentrations (10-10 M), ionic strengths (0-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!