Backbone chemical shift assignments for the Toho-1 β-lactamase (263 amino acids, 28.9 kDa) are reported based on triple resonance solution-state NMR experiments performed on a uniformly H,C,N-labeled sample. These assignments allow for subsequent site-specific characterization at the chemical, structural, and dynamical levels. At the chemical level, titration with the non-β-lactam β-lactamase inhibitor avibactam is found to give chemical shift perturbations indicative of tight covalent binding that allow for mapping of the inhibitor binding site. At the structural level, protein secondary structure is predicted based on the backbone chemical shifts and protein residue sequence using TALOS-N and found to agree well with structural characterization from X-ray crystallography. At the dynamical level, model-free analysis of N relaxation data at a single field of 16.4 T reveals well-ordered structures for the ligand-free and avibactam-bound enzymes with generalized order parameters of ~ 0.85. Complementary relaxation dispersion experiments indicate that there is an escalation in motions on the millisecond timescale in the vicinity of the active site upon substrate binding. The combination of high rigidity on short timescales and active site flexibility on longer timescales is consistent with hypotheses for achieving both high catalytic efficiency and broad substrate specificity: the induced active site dynamics allows variously sized substrates to be accommodated and increases the probability that the optimal conformation for catalysis will be sampled.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122098PMC
http://dx.doi.org/10.1007/s10858-021-00375-9DOI Listing

Publication Analysis

Top Keywords

backbone chemical
12
chemical shift
12
active site
12
toho-1 β-lactamase
8
shift assignments
8
chemical
6
β-lactamase backbone
4
assignments changes
4
changes dynamics
4
binding
4

Similar Publications

Developing Orthogonal Fluorescent RNAs for Photoactive Dual-color Imaging of RNAs in Live Cells.

Angew Chem Int Ed Engl

January 2025

Hunan University, College of Chemistry and Chemical Engineering, Yuelushan, Changsha, Hunan, 410082, P.R.China, 410082, Changsha, CHINA.

Fluorogenic RNA aptamers have revolutionized the visualization of RNAs within complex cellular processes. A representative category of them employs the derivatives of green fluorescent protein chromophore, 4-hydroxybenzlidene imidazolinone (HBI), as chromophores. However, the structural homogeneity of their chromophoric backbones causes severe cross-reactivity with other homologous chromophores.

View Article and Find Full Text PDF

CPconf_score: A Deep Learning Free Energy Function Trained Using Molecular Dynamics Data for Cyclic Peptides.

J Chem Theory Comput

January 2025

The Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomic, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.

Accurate structural feature characterization of cyclic peptides (CPs), especially those with less than 10 residues and -peptide bonds, is challenging but important for the rational design of bioactive peptides. In this study, we performed high-temperature molecular dynamics (high-T MD) simulations on 250 CPs with random sequences and applied the point-adaptive k-nearest neighbors (PAk) method to estimate the free energies of millions of sampled conformations. Using this data set, we trained a SchNet-based deep learning model, termed CPconf_score, to predict the conformational free energies of CPs.

View Article and Find Full Text PDF

Nucleophilic Reactions of Phosphorothioate Oligonucleotides.

Small Methods

January 2025

College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.

The nucleophilic reaction between phosphorothioate oligonucleotides and electrophilic reagents has become a cost-effective and efficient approach for oligonucleotide functionalization. This method allows for the precise incorporation of desired chemical structures at specific sites on the phosphorothioate backbone through conjugation with electrophilic groups. The reaction is characterized by its high reactivity and yield, as well as its ability to enhance the hydrophilicity of otherwise hydrophobic compounds.

View Article and Find Full Text PDF

Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release.

Acta Biomater

January 2025

Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA. Electronic address:

The design of biomaterials that can reconfigure on-demand in response to external stimuli is an emerging area in materials research. However, achieving reversible assembly of protein-based biomaterials by light input remains a major challenge. Here, we present the engineering of a new protein material that is capable of switching between liquid and solid state reversibly, controlled by lights of different wavelengths.

View Article and Find Full Text PDF

Thermosensitive-based synergistic antibacterial effects of novel LL37@ZPF-2 loaded poloxamer hydrogel for infected skin wound healing.

Int J Pharm

January 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:

Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!