Some cyanobacteria produce toxins that threaten the aquatic ecosystem and human health. To prevent serious consequences, this study suggests a potential means of reducing microalgal toxins, microcystins (MCs) by applying non-thermal plasma (NTP) process. Quantified MC-RR, -LR, and -YR were drastically degraded and removed as much as 99.9% by reactive species generated by NTP. Results further demonstrate that NTP uses less energy based on estimated energy per order (EEO kWh m order) than other advanced oxidation processes and requires relatively less time to remove the MCs. As a result, NTP may be a viable management option for effective MC control during severe surface water blooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.131338 | DOI Listing |
BMC Oral Health
January 2025
Associate Professor of Operative Dentistry, Conservative Dentistry Department, Faculty of Oral and Dental Medicine Badr University in Cairo, Cairo, Egypt.
Background: Endodontic treatment aims in the preservation of extremely carious primary teeth. For root canal therapy to be successful, root canals must be properly prepared and effectively irrigated .Therefore, it is necessary to select the proper root canal disinfection method to preserve the primary tooth.
View Article and Find Full Text PDFFoods
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas.
View Article and Find Full Text PDFWater Res
December 2024
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
The escalating challenges posed by water resource contamination, especially exacerbated by health concerns associated with microbial fungi threats, necessitate advanced disinfection technologies. Within this context, non-thermal plasma generated within bubble column reactors emerges as a promising antifungal strategy. The effects of direct plasma bubbles within different discharge modes and thus-produced plasma activated water (PAW) on the inactivation of Saccharomyces cerevisiae are investigated.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:
There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).
View Article and Find Full Text PDFFront Plant Sci
December 2024
Research Centre for Vegetables and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Pescia (PT), Italy.
Introduction: The non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.
Methods: The nutrient solution supplied to a red coloured variety of rocket salad [ (L.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!